Shopping Cart

No products in the cart.

ASTM-A418:2009 Edition

$40.63

A418/A418M-09 Standard Practice for Ultrasonic Examination of Turbine and Generator Steel Rotor Forgings

Published By Publication Date Number of Pages
ASTM 2009 8
Guaranteed Safe Checkout
Categories: ,

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

ASTM A418/A418M-09

Historical Standard: Standard Practice for Ultrasonic Examination of Turbine and Generator Steel Rotor Forgings

ASTM A418/A418M

Scope

1.1 This practice for ultrasonic examination covers turbine and generator steel rotor forgings covered by Specifications A 469/A 469M, A 470/A 470M, A 768/A 768M, and A 940/A 940M. This standard shall be used for contact testing only.

1.2 This practice describes a basic procedure of ultrasonically inspecting turbine and generator rotor forgings. It does not restrict the use of other ultrasonic methods such as reference block calibrations when required by the applicable procurement documents nor is it intended to restrict the use of new and improved ultrasonic test equipment and methods as they are developed.

1.3 This practice is intended to provide a means of inspecting cylindrical forgings so that the inspection sensitivity at the forging center line or bore surface is constant, independent of the forging or bore diameter. To this end, inspection sensitivity multiplication factors have been computed from theoretical analysis, with experimental verification. These are plotted in Fig. 1 (bored rotors) and Fig. 2 (solid rotors), for a true inspection frequency of 2.25 MHz, and an acoustic velocity of 2.30 × 105 in./s [5.85 × 105 cm/s]. Means of converting to other sensitivity levels are provided in Fig. 3. (Sensitivity multiplication factors for other frequencies may be derived in accordance with X1.1 and X1.2 of Appendix X1.)

1.4 Considerable verification data for this method have been generated which indicate that even under controlled conditions very significant uncertainties may exist in estimating natural discontinuities in terms of minimum equivalent size flat-bottom holes. The possibility exists that the estimated minimum areas of natural discontinuities in terms of minimum areas of the comparison flat-bottom holes may differ by 20 dB (factor of 10) in terms of actual areas of natural discontinuities. This magnitude of inaccuracy does not apply to all results but should be recognized as a possibility. Rigid control of the actual frequency used, the coil bandpass width if tuned instruments are used, and so forth, tend to reduce the overall inaccuracy which is apt to develop.

1.5 This practice for inspection applies to solid cylindrical forgings having outer diameters of not less than 2.5 in. [64 mm] nor greater than 100 in. [2540 mm]. It also applies to cylindrical forgings with concentric cylindrical bores having wall thicknesses of 2.5 [64 mm] in. or greater, within the same outer diameter limits as for solid cylinders. For solid sections less than 15 in. [380 mm] in diameter and for bored cylinders of less than 7.5 in. [190 mm] wall thickness the transducer used for the inspection will be different than the transducer used for larger sections.

1.6 Supplementary requirements of an optional nature are provided for use at the option of the purchaser. The supplementary requirements shall apply only when specified individually by the purchaser in the purchase order or contract.

1.7 This practice is expressed in both inch-pound units and in SI units; however, unless the purchase order or contract specifies the applicable M specification designation (SI units), the inch-pound units shall apply. The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the practice, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Note—Sensitivity multiplication factor such that a 10 % indication at the forging bore surface will be equivalent to a 1/8 in. [3 mm] diameter flat bottom hole. Inspection frequency: 2.0 or 2.25 MHz. Material velocity: 2.30 × 105 in./s [5.85 × 105 cm/s].

FIG. 1 Bored Forgings

Note—Sensitivity multiplication factor such that a 10 % indication at the forging centerline surface will be equivalent to a 1/8 in. [3 mm] diameter flat bottom hole. Inspection frequency: 2.0 or 2.25 MHz. Material velocity: 2.30 × 105 in./s [5.85 × 105 cm/s].

FIG. 2 Solid Forgings

FIG. 3 Conversion Factors to Be Used in Conjunction with Fig. 1 and Fig. 2 if a Change in the Reference Reflector Diameter is Required

Keywords

generator material; nondestructive tests; rotors, turbine, or generator; steel forgings; steel forgingsalloy; turbine materials; ultrasonic examination; ultrasonic examination method; Amplifier calibration; Forgings (turbine rotors/disks/shafts); Generator materials–turbine rotors and shafts; Steel forgings (turbine); Ultrasonic testing–steel

ICS Code

ICS Number Code 77.040.20 (Non-destructive testing of metals)

DOI: 10.1520/A0418_A0418M-09

PDF Catalog

PDF Pages PDF Title
1 Scope
Referenced Documents
2 Significance and Use
General Requirements
FIG. 1
3 Personnel Requirements
FIG. 2
4 Pulsed Ultrasonic Reflection Equipment and Accessories
FIG. 3
5 Preparation of Forging for Ultrasonic Inspection
Procedure
6 Report
Keywords
7 X1. DERIVATION OF SENSITIVITY MULTIPLICATION FACTORS
X1.1
X1.2
X1.3
X1.4
X1.5
ASTM-A418
$40.63