ASTM-C1617:2024 Edition
$37.38
C1617-24 Standard Test Method for Quantitative Accelerated Laboratory Evaluation of Extraction Solutions Containing Ions Leached from Thermal Insulation on Aqueous Corrosion of Carbon Steel
Published By | Publication Date | Number of Pages |
ASTM | 2024 |
ASTM C1617-24
Active Standard: Standard Test Method for Quantitative Accelerated Laboratory Evaluation of Extraction Solutions Containing Ions Leached from Thermal Insulation on Aqueous Corrosion of Carbon Steel
ASTM C1617
Scope
1.1 This test method covers procedures for a quantitative accelerated laboratory evaluation of the influence of extraction solutions containing ions leached from thermal insulation on the aqueous corrosion of carbon steel. The primary intent of the practice is for use with thermal insulation and associated materials that contribute to, or alternatively inhibit, the aqueous corrosion of carbon steel due to soluble ions that are leached by water from within the insulation. The quantitative evaluation criteria are Mass Loss Corrosion Rate (MLCR) expressed in mils per year determined from the weight loss due to corrosion of exposed metal coupons after they are cleaned.
1.2 This test method cannot cover all possible field conditions that contribute to aqueous corrosion. The intent is to provide an accelerated means to obtain a non-subjective numeric value for judging the potential contribution to the corrosion of carbon steel that can come from ions contained in thermal insulation materials or other experimental solutions. The calculated numeric value is the mass loss corrosion rate. This calculation is based on general corrosion spread equally over the test duration and the exposed area of the experimental cells created for the test. Corrosion found in field situations and this accelerated test also involves pitting, edge effects, and the rate changes over time.
1.3 The insulation extraction solutions prepared for use in the test can be altered by the addition of corrosive ions to the solutions to simulate contamination from an external source. Ions expected to provide corrosion inhibition can be added to investigate their inhibitory effect.
1.4 Prepared laboratory ionic solutions are used as reference solutions and controls, to provide a means of calibration and comparison.2
1.5 Other liquids can be tested for their potential corrosiveness including cooling tower water, boiler feed, and chemical stocks. Added chemical inhibitors or protective coatings applied to the metal can also be evaluated using the general guidelines of the practice.
1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Keywords
carbon steel; chloride; corrosion; corrosion under insulation; inhibition; protective coatings; thermal insulation;
ICS Code
ICS Number Code 77.060 (Corrosion of metals)
DOI: 10.1520/C1617-24