BSI 23/30446820 DC 2023
$13.70
BS EN IEC 61000-5-6. Electromagnetic Compatibility (EMC) – Part 5-6. Installation and mitigation guidelines. Mitigation of external EM influences
Published By | Publication Date | Number of Pages |
BSI | 2023 | 74 |
PDF Catalog
PDF Pages | PDF Title |
---|---|
8 | FOREWORD |
10 | INTRODUCTION |
11 | 1 Scope 2 Normative references |
12 | 3 Terms and definitions |
16 | 4 Introduction and General Considerations 4.1 Introduction |
17 | 4.2 General considerations 4.2.1 Elementary interference control 4.2.1.1 Shields and interfaces |
18 | 5 Mitigation of radiated and conducted disturbances 5.1 Topological concepts |
20 | 5.2 Mitigation needs 5.3 The general concept of enclosure |
21 | 5.4 Interactions at the enclosure boundary 6 Shielding 6.1 General |
22 | 6.2 Classification of protection zones |
23 | 6.2.1 Zone 1 – Building shield 6.2.2 Zone 2 – Room shield |
24 | 6.2.3 Zone 3 – Equipment shield 6.2.4 Zone 4 – Apparatus shield 6.3 Design principles for screening 6.3.1 General 6.3.2 Shielding effectiveness |
25 | 6.3.3 Maintaining shielding effectiveness |
26 | 6.4 Implementation of screening 6.4.1 Sensitive apparatus |
27 | 6.4.2 Shielding of racks and chassis (zones 4/3 barrier) 6.4.3 Shielding of cabinets (zones 3/2 barrier) 6.4.4 Shielding of rooms (zones 2/1 barrier) |
28 | 6.4.5 Shielding of buildings (zones 1/0 barrier) 6.4.6 Dealing with apertures 6.4.6.1 Honeycombs |
29 | 6.4.6.2 Conductive gaskets |
30 | 6.4.6.3 Gasket types and other materials 6.4.6.4 Gasket mounting 6.4.6.5 EMC sealants 7 Filters 7.1 General |
31 | 7.2 Fundamental filter characteristics 7.2.1 Attenuation and insertion loss |
33 | 7.2.2 Basic types of filters 7.3 Functional tasks |
34 | 7.4 Additional filtering concerns 7.4.1 Technical aspects |
35 | 7.4.2 Economic aspects 7.5 Selection criteria 7.5.1 Voltage rating |
36 | 7.5.2 Current rating 7.5.3 Duty-cycle and overload operating conditions 7.5.4 Operating frequency and range of frequencies to be filtered 7.5.5 Voltage drop and signal loss 7.5.6 Ambient temperature range 7.5.7 Insertion loss and attenuation |
37 | 7.5.8 Withstand voltage 7.5.9 Attenuation of HF transient disturbances 7.5.10 Leakage current to protective earthing conductor |
38 | 7.5.11 Permissible reactive current 7.6 Filter installation 7.6.1 Installation and mounting techniques |
39 | 7.6.2 Wiring 7.6.3 Installation of cabinet filters |
40 | 7.7 Filter testing 7.7.1 General considerations |
41 | 7.7.2 Insulation to earth and withstand voltage of installed filters 7.7.3 Insertion loss 7.7.4 Attenuation of HF transient disturbances |
42 | 8 Decoupling devices 8.1 Isolation transformers |
44 | 8.2 Motor-generator sets 8.3 Engine generators 8.4 Uninterruptible power supplies (UPS) |
45 | 8.5 Optical links 9 Surge-protective devices 9.1 General |
46 | 9.2 Direct equipment protection |
47 | 9.3 Installation of multiple SPDs |
48 | 9.4 Side-effects of uncoordinated cascades 9.5 Typical protective devices 9.5.1 Voltage-limiting type SPDs 9.5.2 Voltage-switching type SPDs |
49 | Bibliography |
50 | Annex A (informative) A Resilience based approach for the mitigation of external High Power Electromagnetic environments A.1 Introduction A.2 The Concept of Resilience |
51 | A.2.1 A Discussion on the Protection-lead Approach |
52 | A.2.2 The Benefits of a Resilience-based Approach A.2.3 Affordability and Risk |
53 | A.2.4 Appropriate Application of a Resilience based approach |
54 | A.3 An EM Resilience Model and Framework A.3.1 The Identify function A.3.2 The Protect function A.3.3 The Detect function A.3.4 The Respond function |
55 | A.3.5 The Recover function A.3.6 Adaptation of the NIST framework to HPEM resilience A.4 HPEM Resilience Framework Implementation A.4.1 Introduction A.4.2 Identify |
57 | A.4.2.1 Discussion A.4.3 Protect |
58 | 9.5.3 Discussion |
59 | A.4.3.1.1 Protection technologies relevant to a resilience approach A.4.3.1.1.1 Shielded cables A.4.3.1.1.2 Shielded cable layout A.4.3.1.1.3 Shielded cabinets |
60 | A.4.3.1.1.4 Combination filters A.4.3.1.1.5 HPEM Protection/ Resilience of Ancillary systems |
61 | A.4.3.1.2 HPEM Protection to enable or facilitate response and recovery A.4.4 Detect |
62 | A.4.4.1 Discussion A.4.4.1.1 Forecasting and warning |
63 | A.4.4.1.2 Requirements and Technology for HPEM detection A.4.4.1.2.1 RF receivers A.4.4.1.2.2 Advantageous use of Ubiquitous receiver technology A.4.4.1.2.3 Use of software to correlate effect to an HPEM disturbance A.4.4.1.2.4 Electromagnetic Field (EMF) detectors A.4.4.1.2.5 Electro-optic devices |
64 | A.4.4.1.2.6 Other RF Transducers |
65 | A.4.4.1.3 Examples of HPEM Detection Solutions A.4.4.1.3.1 HPM detector, TNO, The Netherlands |
66 | A.4.4.1.3.2 EM Inferential-Detector system, Emprimus, USA A.4.4.1.3.3 IEMI Detector system, Fraunhofer INT, Germany |
67 | A.4.4.1.3.4 Norms detector, China A.4.4.1.3.5 TOTEM Detector system, QinetiQ Ltd., UK |
68 | A.4.4.1.4 Challenges for HPEM Detection A.4.4.1.4.1 False Alarms A.4.4.1.4.2 Detection threshold setting A.4.4.1.4.3 Detector location and orientation: |
69 | A.4.4.2 Summary Recommendations |
70 | A.4.5 Respond A.4.5.1 Discussion A.4.6 Recover |
71 | A.4.6.1 Discussion A.5 Summary A.6 References |