Shopping Cart

No products in the cart.

BSI 24/30489409 DC 2024

$24.66

BS EN IEC 63563-10 Qi Specification version 2.0 – Part 10. MPP System Specification (Fast track)

Published By Publication Date Number of Pages
BSI 2024 166
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

PDF Catalog

PDF Pages PDF Title
1 30489409-NC.pdf
3 100_4131e_CDV.pdf
14 1 General Description
1.1 Introduction
1.1.1 Scope
1.1.2 Document organization
1.1.3 Design goals
16 1.1.4 BPP and MPP interoperability
1.1.5 Related documents
17 1.2 Architectural overview
1.2.1 System Description
18 1.2.2 System block diagrams
20 1.3 Glossary
1.3.1 Definitions
21 1.3.2 Acronyms
1.3.3 Symbols
22 1.4 System Model vs Spec
23 2 Authentication Protocol
2.1 Authentication
24 3 Coil Design
3.1 Introduction and Background
3.2 PTx Coil System Model
3.2.1 Mechanical Construction
3.2.1.1 Overview
25 3.2.1.2 Top Enclosure
3.2.1.3 Coil Module (AC magnetics)
27 3.2.1.4 Coil Module (permanent magnets)
29 3.2.1.5 Magnet shunt top view
30 3.2.1.6 Bottom enclosure
32 3.2.1.7 Top view of bottom enclosure
33 3.2.1.8 Overall Assembly
3.2.1.9 PTx Orientation Magnets
3.2.1.9.1 Transmitter-side Orientation Magnet
35 3.2.2 Electrical Properties
3.2.2.1 Electrical Parameters of PTx coil system model
36 3.2.2.2 Preventing Saturation of PRx Shielding
37 3.3 PRx Coil System Model
3.3.1 Mechanical Construction
3.3.1.1 Overall Assembly
38 3.3.1.2 Bottom Enclosure
3.3.1.3 Support Plate
3.3.1.4 Coil Module
43 3.3.1.5 Coil Module (permanent magnets)
45 3.3.1.6 Friendly Metal Block
3.3.1.7 Overall Assembly
46 3.3.2 Electrical Properties
3.3.2.1 Electrical Parameters of PRx Coil System Model
47 3.4 Properties of Mated Coil System Models
3.4.1 Electrical measurement under mated conditions
48 3.5 Coil Specifications
3.5.1 PRx Coil Specifications
54 3.5.2 PTx Coil Specifications
61 4 Power Delivery
4.1 Power Profiles (BPP + MPP)
4.1.1 Specifications
4.1.2 Recommendations
4.1.3 Specification Notes
62 4.2 Power Receiver Functional Block Diagram
4.2.1 System Model
4.2.1.1 System model PRx circuit topology
63 4.2.1.2 System model PRx resonance tuning in BPP mode
64 4.2.1.3 System model resonance tuning in MPP mode
4.2.1.3.1 Rule of thumb
65 4.2.1.3.2 Selection of resonant capacitors
4.2.1.3.3 FHA analysis: selecting initial values of Ctx
68 4.2.1.3.4 Time-domain sweep
4.2.1.3.5 Other design considerations
4.2.1.4 PRx electrical properties
4.2.1.5 System model PRx Vrect setting
69 4.3 Power Transmitter Functional Block Diagram
4.3.1 System Model
70 4.3.1.1 Definition of inverter phase θ
4.3.1.2 PTx resonant capacitor selection
71 4.3.1.3 PTx electrical properties
72 4.4 Operating Frequency
4.4.1 System Model
4.4.2 Specifications
4.5 Object Detection
4.5.1 System Model
73 4.5.2 Specifications
4.6 Digital Pings 128kHz/360kHz
4.6.1 Need For Digital Pings 128kHz / 360kHz
80 4.6.2 Specifications
4.6.2.1 PTx Digital Ping Specifications
4.6.2.2 PTx Digital Ping Specifications – 128kHz Ping HB_Low
81 4.6.2.3 PTx Digital Ping Specifications – 128kHz Ping HB_High
4.6.2.4 PTx Digital Ping Specifications – 128kHz Ping FB
4.6.2.5 PTx Digital Ping Specifications – 360kHz Ping FB
82 4.6.2.6 PRx Digital Ping Specifications
4.6.2.7 PRx Digital Ping Specifications
4.7 K Estimation
4.7.1 System Model
4.7.1.1 Need For K Estimation
83 4.7.1.2 Kest Calculation Formula
4.7.1.2.1 E0 and E1 Fit Example
84 4.7.1.3 Eco-system Scaling
85 4.7.1.3.1 Subscript nomenclature
4.7.1.3.2 Calculation of Kest Scaling Factors
4.7.1.4 Error stack-up
86 4.7.2 Specifications
87 4.8 Output Impedance and Load Transients
4.8.1 System Model
4.8.1.1 Slope of the output Impedance
88 4.8.1.2 Worst-case tests to measure the slope of the output impedance
4.8.1.2.1 Load step procedure
89 4.8.1.2.2 Load dump procedure
90 4.9 Set Pr_max
4.9.1 Background
4.9.2 System Model
4.9.2.1 Theory of Operation
4.9.2.2 PRx ballast current
91 4.9.2.3 Set Pr_max Flow
92 4.9.2.3.1 Overall Flow
93 4.9.2.3.2 Gain Measurement
94 4.9.2.3.3 Setting initial Vrect_target and Pr_max based on G1*G2
95 4.9.2.3.4 Low-k Mode
96 4.9.3 PTx Specifications
4.9.4 PTx Specification Notes
4.10 Power Transfer Control
4.10.1 Intro and Background (Informative)
4.10.2 System Model
4.10.2.1 Background and Assumptions
97 4.10.2.1.1 System-level block diagrams
4.10.2.1.2 Design considerations
98 4.10.2.2 Vrect_target Loop (PRx+PTx)
4.10.2.2.1 PTx Control
100 4.10.2.3 Ilim Loop (PRx)
4.10.2.3.1 Load Current Control
4.10.2.3.2 Ilim Freeze and Anti-Crash Mechanism
101 4.10.2.3.3 Loop Update Interval
102 4.10.2.4 Power throttling
4.10.3 End-to-End Control Specifications
4.10.3.1 Background
4.10.3.2 PTx Specifications
103 4.10.3.3 PTx Specification Notes
104 4.10.3.4 PRx Specifications
4.10.3.5 PRx Recommendations
105 4.10.3.6 PRx Specification Notes
4.11 Mitigation of Side Effects of Cd at MPP Frequency
4.11.1 System Model
4.11.1.1.1 Non-monotonic Vrect/phase response and output impedance at light load
106 4.11.1.1.2 Over-voltage mitigation
107 4.11.1.1.3 Hard switching mitigation
108 4.11.1.2 Receiver overvoltage protection
4.11.2 Specifications
4.12 Cloak
4.13 Common-mode Noise
109 5 Communications Physical Layer
5.1 Introduction
5.2 Frequency Shift Keying (PTx to PRx)
110 5.2.1 System Model
5.2.1.1 FSK Modulator (PTx)
5.2.1.2 FSK Receiver (PRx)
112 5.2.2 Frequency Shift Keying Specifications
113 5.3 Amplitude Shift Keying (PRx to PTx)
5.3.1 Modulation Scheme
114 5.3.2 System Model
5.3.2.1 ASK Modulator (PRx)
116 5.3.2.2 ASK Receiver (PTx)
117 5.3.2.3 ASK Modulation Trends
119 5.3.3 ASK Specifications
121 6 Foreign Object Detection
6.1 Background
6.2 Open-air Q-Test (pre-power transfer FOD method)
6.2.1 Introduction
124 6.2.2 Movement Timer
6.2.3 Settling Timer
6.2.4 Glossary
6.2.5 Open-air Q-Test Specifications
125 6.2.6 Theory of Operation
6.2.6.1 Measuring Q
126 6.2.6.1.1 Note on PTx with multiple resonant capacitors
6.2.6.1.2 Impact of FO or PRx on Q-deflection
6.2.6.2 Q compensation for drift
6.2.6.2.1 Accentuating Q deflection due to frequency drift caused by FO
127 6.2.6.2.2 Temperature Compensation
6.2.6.2.3 Separating DC and AC resistance
6.2.6.3 Choosing a Q deflection threshold
6.2.6.4 Potential Implementation Issues
6.2.6.4.1 Proximity to metal objects
6.2.6.4.2 PRx misplaced then replaced
128 6.2.6.5 Summary
129 6.2.7 PRx movement and digital ping
130 6.3 MPP Power Loss Accounting (in-power transfer FOD method)
6.3.1 Introduction
131 6.3.2 MPLA Specifications
6.3.2.1 MPLA PRx Specifications
132 6.3.2.2 MPLA PTx Specifications
134 6.3.2.3 Parameter Representations
6.3.3 MPLA Equations
135 6.3.4 Eco-System Scaling
6.3.4.1 Introduction
136 6.3.4.2 Eco-System Scaling Derivation
137 6.3.5 Process of Extracting LQK-Dependent Coefficients
138 6.3.5.1 FO power estimation error due to inverter hard switching
6.3.6 FO power estimation error outside 2×2 cylinder
139 6.3.7 FO Detection Thresholds
6.3.7.1 FO Detection Thresholds
140 6.3.7.2 pFO Distributions for Scenarios 1 and 2
142 6.3.8 In-Power FOD Action
6.3.8.1 FOD Action
144 6.3.8.2 Power Throttling
6.3.8.3 FOD Action PTx Specifications
6.3.9 Accessory Power Loss Requirements
6.3.9.1 Accessory Power Loss
6.3.10 Error Budget
6.3.10.1 Introduction
145 6.3.10.2 Measurement Error Analysis
147 6.3.10.3 pFO Error Budget
149 6.3.10.4 Is 3-sigma Sufficient?
150 6.3.10.5 Power Loss Accounting Compliance Testing
151 6.3.11 Measuring coil current
153 7 Annex
7.1 PTx Working with Legacy PRx
7.1.1 Background
7.2 Mitigation of Saturation for BPP
7.2.1 System Model
7.2.1.1 Introduction
154 7.2.1.2 SHO Detection
156 7.2.1.3 SHO Mitigation
7.2.1.4 Interaction with RPP
157 7.2.2 SHO Specifications
7.3 Loss-Split Modeling: A framework for calculating localized eddy-current losses
7.3.1 Introduction
159 7.3.2 Comparison between the standard T-Model and Loss-Split Model
160 7.3.3 Determining the Loss-Split Model Parameters
161 7.3.4 Calculating Power Loss using Loss-Split Model
162 7.3.5 Loss-Split Model Validation
7.4 Resistive Coupling Factor
7.4.1 Introduction
7.4.2 Definition of Mutual Resistance and Kr
163 7.4.2.1 Loss associated with mutual resistance
7.4.3 Cause of Mutual Resistance
164 7.4.3.1 Eddy Current Cause
7.4.3.1.1 Physical Meaning of a Negative Mutual Resistance
7.4.3.2 Hysteresis Cause
165 7.4.4 Why is Kr non-negligible
BSI 24/30489409 DC 2024
$24.66