BSI 24/30489409 DC 2024
$24.66
BS EN IEC 63563-10 Qi Specification version 2.0 – Part 10. MPP System Specification (Fast track)
Published By | Publication Date | Number of Pages |
BSI | 2024 | 166 |
PDF Catalog
PDF Pages | PDF Title |
---|---|
1 | 30489409-NC.pdf |
3 | 100_4131e_CDV.pdf |
14 | 1 General Description 1.1 Introduction 1.1.1 Scope 1.1.2 Document organization 1.1.3 Design goals |
16 | 1.1.4 BPP and MPP interoperability 1.1.5 Related documents |
17 | 1.2 Architectural overview 1.2.1 System Description |
18 | 1.2.2 System block diagrams |
20 | 1.3 Glossary 1.3.1 Definitions |
21 | 1.3.2 Acronyms 1.3.3 Symbols |
22 | 1.4 System Model vs Spec |
23 | 2 Authentication Protocol 2.1 Authentication |
24 | 3 Coil Design 3.1 Introduction and Background 3.2 PTx Coil System Model 3.2.1 Mechanical Construction 3.2.1.1 Overview |
25 | 3.2.1.2 Top Enclosure 3.2.1.3 Coil Module (AC magnetics) |
27 | 3.2.1.4 Coil Module (permanent magnets) |
29 | 3.2.1.5 Magnet shunt top view |
30 | 3.2.1.6 Bottom enclosure |
32 | 3.2.1.7 Top view of bottom enclosure |
33 | 3.2.1.8 Overall Assembly 3.2.1.9 PTx Orientation Magnets 3.2.1.9.1 Transmitter-side Orientation Magnet |
35 | 3.2.2 Electrical Properties 3.2.2.1 Electrical Parameters of PTx coil system model |
36 | 3.2.2.2 Preventing Saturation of PRx Shielding |
37 | 3.3 PRx Coil System Model 3.3.1 Mechanical Construction 3.3.1.1 Overall Assembly |
38 | 3.3.1.2 Bottom Enclosure 3.3.1.3 Support Plate 3.3.1.4 Coil Module |
43 | 3.3.1.5 Coil Module (permanent magnets) |
45 | 3.3.1.6 Friendly Metal Block 3.3.1.7 Overall Assembly |
46 | 3.3.2 Electrical Properties 3.3.2.1 Electrical Parameters of PRx Coil System Model |
47 | 3.4 Properties of Mated Coil System Models 3.4.1 Electrical measurement under mated conditions |
48 | 3.5 Coil Specifications 3.5.1 PRx Coil Specifications |
54 | 3.5.2 PTx Coil Specifications |
61 | 4 Power Delivery 4.1 Power Profiles (BPP + MPP) 4.1.1 Specifications 4.1.2 Recommendations 4.1.3 Specification Notes |
62 | 4.2 Power Receiver Functional Block Diagram 4.2.1 System Model 4.2.1.1 System model PRx circuit topology |
63 | 4.2.1.2 System model PRx resonance tuning in BPP mode |
64 | 4.2.1.3 System model resonance tuning in MPP mode 4.2.1.3.1 Rule of thumb |
65 | 4.2.1.3.2 Selection of resonant capacitors 4.2.1.3.3 FHA analysis: selecting initial values of Ctx |
68 | 4.2.1.3.4 Time-domain sweep 4.2.1.3.5 Other design considerations 4.2.1.4 PRx electrical properties 4.2.1.5 System model PRx Vrect setting |
69 | 4.3 Power Transmitter Functional Block Diagram 4.3.1 System Model |
70 | 4.3.1.1 Definition of inverter phase θ 4.3.1.2 PTx resonant capacitor selection |
71 | 4.3.1.3 PTx electrical properties |
72 | 4.4 Operating Frequency 4.4.1 System Model 4.4.2 Specifications 4.5 Object Detection 4.5.1 System Model |
73 | 4.5.2 Specifications 4.6 Digital Pings 128kHz/360kHz 4.6.1 Need For Digital Pings 128kHz / 360kHz |
80 | 4.6.2 Specifications 4.6.2.1 PTx Digital Ping Specifications 4.6.2.2 PTx Digital Ping Specifications – 128kHz Ping HB_Low |
81 | 4.6.2.3 PTx Digital Ping Specifications – 128kHz Ping HB_High 4.6.2.4 PTx Digital Ping Specifications – 128kHz Ping FB 4.6.2.5 PTx Digital Ping Specifications – 360kHz Ping FB |
82 | 4.6.2.6 PRx Digital Ping Specifications 4.6.2.7 PRx Digital Ping Specifications 4.7 K Estimation 4.7.1 System Model 4.7.1.1 Need For K Estimation |
83 | 4.7.1.2 Kest Calculation Formula 4.7.1.2.1 E0 and E1 Fit Example |
84 | 4.7.1.3 Eco-system Scaling |
85 | 4.7.1.3.1 Subscript nomenclature 4.7.1.3.2 Calculation of Kest Scaling Factors 4.7.1.4 Error stack-up |
86 | 4.7.2 Specifications |
87 | 4.8 Output Impedance and Load Transients 4.8.1 System Model 4.8.1.1 Slope of the output Impedance |
88 | 4.8.1.2 Worst-case tests to measure the slope of the output impedance 4.8.1.2.1 Load step procedure |
89 | 4.8.1.2.2 Load dump procedure |
90 | 4.9 Set Pr_max 4.9.1 Background 4.9.2 System Model 4.9.2.1 Theory of Operation 4.9.2.2 PRx ballast current |
91 | 4.9.2.3 Set Pr_max Flow |
92 | 4.9.2.3.1 Overall Flow |
93 | 4.9.2.3.2 Gain Measurement |
94 | 4.9.2.3.3 Setting initial Vrect_target and Pr_max based on G1*G2 |
95 | 4.9.2.3.4 Low-k Mode |
96 | 4.9.3 PTx Specifications 4.9.4 PTx Specification Notes 4.10 Power Transfer Control 4.10.1 Intro and Background (Informative) 4.10.2 System Model 4.10.2.1 Background and Assumptions |
97 | 4.10.2.1.1 System-level block diagrams 4.10.2.1.2 Design considerations |
98 | 4.10.2.2 Vrect_target Loop (PRx+PTx) 4.10.2.2.1 PTx Control |
100 | 4.10.2.3 Ilim Loop (PRx) 4.10.2.3.1 Load Current Control 4.10.2.3.2 Ilim Freeze and Anti-Crash Mechanism |
101 | 4.10.2.3.3 Loop Update Interval |
102 | 4.10.2.4 Power throttling 4.10.3 End-to-End Control Specifications 4.10.3.1 Background 4.10.3.2 PTx Specifications |
103 | 4.10.3.3 PTx Specification Notes |
104 | 4.10.3.4 PRx Specifications 4.10.3.5 PRx Recommendations |
105 | 4.10.3.6 PRx Specification Notes 4.11 Mitigation of Side Effects of Cd at MPP Frequency 4.11.1 System Model 4.11.1.1.1 Non-monotonic Vrect/phase response and output impedance at light load |
106 | 4.11.1.1.2 Over-voltage mitigation |
107 | 4.11.1.1.3 Hard switching mitigation |
108 | 4.11.1.2 Receiver overvoltage protection 4.11.2 Specifications 4.12 Cloak 4.13 Common-mode Noise |
109 | 5 Communications Physical Layer 5.1 Introduction 5.2 Frequency Shift Keying (PTx to PRx) |
110 | 5.2.1 System Model 5.2.1.1 FSK Modulator (PTx) 5.2.1.2 FSK Receiver (PRx) |
112 | 5.2.2 Frequency Shift Keying Specifications |
113 | 5.3 Amplitude Shift Keying (PRx to PTx) 5.3.1 Modulation Scheme |
114 | 5.3.2 System Model 5.3.2.1 ASK Modulator (PRx) |
116 | 5.3.2.2 ASK Receiver (PTx) |
117 | 5.3.2.3 ASK Modulation Trends |
119 | 5.3.3 ASK Specifications |
121 | 6 Foreign Object Detection 6.1 Background 6.2 Open-air Q-Test (pre-power transfer FOD method) 6.2.1 Introduction |
124 | 6.2.2 Movement Timer 6.2.3 Settling Timer 6.2.4 Glossary 6.2.5 Open-air Q-Test Specifications |
125 | 6.2.6 Theory of Operation 6.2.6.1 Measuring Q |
126 | 6.2.6.1.1 Note on PTx with multiple resonant capacitors 6.2.6.1.2 Impact of FO or PRx on Q-deflection 6.2.6.2 Q compensation for drift 6.2.6.2.1 Accentuating Q deflection due to frequency drift caused by FO |
127 | 6.2.6.2.2 Temperature Compensation 6.2.6.2.3 Separating DC and AC resistance 6.2.6.3 Choosing a Q deflection threshold 6.2.6.4 Potential Implementation Issues 6.2.6.4.1 Proximity to metal objects 6.2.6.4.2 PRx misplaced then replaced |
128 | 6.2.6.5 Summary |
129 | 6.2.7 PRx movement and digital ping |
130 | 6.3 MPP Power Loss Accounting (in-power transfer FOD method) 6.3.1 Introduction |
131 | 6.3.2 MPLA Specifications 6.3.2.1 MPLA PRx Specifications |
132 | 6.3.2.2 MPLA PTx Specifications |
134 | 6.3.2.3 Parameter Representations 6.3.3 MPLA Equations |
135 | 6.3.4 Eco-System Scaling 6.3.4.1 Introduction |
136 | 6.3.4.2 Eco-System Scaling Derivation |
137 | 6.3.5 Process of Extracting LQK-Dependent Coefficients |
138 | 6.3.5.1 FO power estimation error due to inverter hard switching 6.3.6 FO power estimation error outside 2×2 cylinder |
139 | 6.3.7 FO Detection Thresholds 6.3.7.1 FO Detection Thresholds |
140 | 6.3.7.2 pFO Distributions for Scenarios 1 and 2 |
142 | 6.3.8 In-Power FOD Action 6.3.8.1 FOD Action |
144 | 6.3.8.2 Power Throttling 6.3.8.3 FOD Action PTx Specifications 6.3.9 Accessory Power Loss Requirements 6.3.9.1 Accessory Power Loss 6.3.10 Error Budget 6.3.10.1 Introduction |
145 | 6.3.10.2 Measurement Error Analysis |
147 | 6.3.10.3 pFO Error Budget |
149 | 6.3.10.4 Is 3-sigma Sufficient? |
150 | 6.3.10.5 Power Loss Accounting Compliance Testing |
151 | 6.3.11 Measuring coil current |
153 | 7 Annex 7.1 PTx Working with Legacy PRx 7.1.1 Background 7.2 Mitigation of Saturation for BPP 7.2.1 System Model 7.2.1.1 Introduction |
154 | 7.2.1.2 SHO Detection |
156 | 7.2.1.3 SHO Mitigation 7.2.1.4 Interaction with RPP |
157 | 7.2.2 SHO Specifications 7.3 Loss-Split Modeling: A framework for calculating localized eddy-current losses 7.3.1 Introduction |
159 | 7.3.2 Comparison between the standard T-Model and Loss-Split Model |
160 | 7.3.3 Determining the Loss-Split Model Parameters |
161 | 7.3.4 Calculating Power Loss using Loss-Split Model |
162 | 7.3.5 Loss-Split Model Validation 7.4 Resistive Coupling Factor 7.4.1 Introduction 7.4.2 Definition of Mutual Resistance and Kr |
163 | 7.4.2.1 Loss associated with mutual resistance 7.4.3 Cause of Mutual Resistance |
164 | 7.4.3.1 Eddy Current Cause 7.4.3.1.1 Physical Meaning of a Negative Mutual Resistance 7.4.3.2 Hysteresis Cause |
165 | 7.4.4 Why is Kr non-negligible |