Shopping Cart

No products in the cart.

BSI PD CEN/TR 17603-32-06:2022

$215.11

Space engineering. Structural materials handbook – Fracture and material modelling, case studies and design and integrity control and inspection

Published By Publication Date Number of Pages
BSI 2022 426
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies. The Structural materials handbook contains 8 Parts. A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8. The parts are as follows: Part 1 Overview and material properties and applications Clauses 1 ‐ 9 Part 2 Design calculation methods and general design aspects Clauses 10 ‐ 22 Part 3 Load transfer and design of joints and design of structures Clauses 23 ‐ 32 Part 4 Integrity control, verification guidelines and manufacturing Clauses 33 ‐ 45 Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints Clauses 46 ‐ 63 Part 6 Fracture and material modelling, case studies and design and integrity control and inspection Clauses 64 ‐ 81 Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies Clauses 82 ‐ 107 Part 8 Glossary NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

PDF Catalog

PDF Pages PDF Title
2 undefined
29 64 Behaviour of advanced composites
64.1 Introduction
30 64.2 Summary of material behaviour
64.2.1 Metal matrix composites
64.2.1.1 Particulate reinforced (MMCp)
64.2.1.2 Fibre reinforced (MMCf)
31 64.2.2 Inorganic ceramic matrix composites
64.2.2.1 Fibre reinforced (ICMCf)
64.3 Significant behavioural characteristics
64.3.1 General
64.3.2 Modulus mismatch
32 64.3.3 Matrix-to-reinforcement interface
33 64.3.4 In-situ fibre strength
64.3.5 CTE mismatch
34 64.3.6 Thermal history and residual stresses
64.3.7 Multiple cracking
64.3.7.1 Fibre reinforced materials
64.3.7.2 Particulate reinforced materials
64.3.8 Thermo-mechanical fatigue (TMF)
64.4 Basic fracture characteristics
64.4.1 General
35 64.4.2 Particulate reinforced MMC
36 64.4.3 Fibre reinforced MMC
37 64.4.4 Fibre reinforced CMC
64.4.5 Defining design values
64.4.5.1 General
38 64.4.5.2 Failure criteria
64.5 Failure criteria for CMC
64.5.1 Introduction
64.5.2 Design aspects
64.5.2.1 General
64.5.2.2 Materials
39 64.5.2.3 Failure loads
64.5.2.4 Test and analysis
40 64.5.2.5 Load introduction points
41 64.6 References
64.6.1 General
42 65 Particulate reinforced metals
65.1 Introduction
65.1.1 Materials
65.1.1.1 General
65.1.1.2 Microstructure
65.1.2 Composites
65.1.2.1 Matrix
43 65.1.3 Particulate reinforcement
65.1.3.1 Types
65.1.3.2 Size
44 65.2 Damage mechanisms
65.2.1 Unnotched specimen
45 65.2.2 Notched specimen
65.2.3 Influence of particles
46 65.2.4 Composite performance
65.3 Failure modes and fracture behaviour
65.3.1 Matrix effects
65.3.1.1 General
47 65.3.1.2 Duplex microstructures
65.3.2 Failure mode studies
65.3.3 Particulate shape and aspect ratio
49 65.3.4 Particulate fracture
65.3.5 Void nucleation and growth
50 65.3.6 Fracture toughness
65.3.6.1 General
65.3.6.2 Common terms
51 65.4 Thermo-mechanical fatigue (TMF) and creep
65.4.1 Residual stresses
65.4.2 Temperature
65.4.3 Superplasticity
65.4.4 Applications
65.5 References
65.5.1 General
54 66 Fibre reinforced metals
66.1 Introduction
66.1.1 Materials
66.1.1.1 General
66.1.1.2 Matrix
55 66.1.1.3 Fibre reinforcement
66.2 Damage mechanisms
66.2.1 General
66.2.2 Effect of lay-up
66.2.2.1 General
66.2.2.2 Boron reinforced aluminium
66.2.2.3 Titanium matrix composites
56 66.3 Failure modes
66.3.1 General
66.3.2 Matrix dominated failure
66.3.3 Fibre-dominated damage
66.3.4 Self-similar damage growth
57 66.3.5 Fibre-matrix interfacial failures
66.4 Thermo-mechanical and creep response
66.4.1 General
58 66.4.2 Application
66.5 References
66.5.1 General
60 67 Inorganic ceramic matrix composites
67.1 Introduction
67.1.1 General
61 67.1.2 Matrix
67.1.3 Interface
67.1.4 Fibres
67.2 Damage mechanisms
67.2.1 Material effects
67.2.2 Microcracking
63 67.2.3 Porosity
64 67.2.4 Manufacturing and in-service effects
67.2.5 Crack propagation
65 67.3 Fracture behaviour
67.3.1 Toughness parameters
67.3.1.1 General
67.3.1.2 Testing
70 67.3.2 Test specimens
67.3.2.1 Single edge notched beam (SENB) specimens
67.3.3 ‘R’ curves
72 67.4 References
73 68 Modelling advanced materials
68.1 Introduction
68.1.1 Polymer composites
68.1.2 Metal matrix composites
68.1.2.1 General
68.1.2.2 Fibre reinforced MMC
68.1.2.3 Particulate MMC
68.1.3 Inorganic ceramic matrix materials
74 68.1.4 Summary of models
68.1.4.1 General
68.1.4.2 Law of mixtures
68.1.4.3 Shear lag model
68.1.4.4 Laminated plate model
68.1.4.5 Eshelby’s models
68.1.4.6 Other models
75 68.2 Particulate reinforced metals
68.2.1 Use of models
68.3 Fibre reinforced metals
68.3.1 Use of models
76 68.4 Inorganic ceramic matrix composites
68.4.1 Use of models
68.4.1.1 General
68.4.1.2 On-set of matrix cracking
68.4.1.3 Distance between cracks
77 68.4.1.4 Crack ‘closure’ effect
68.4.1.5 Crack growth parameters
79 68.5 References
68.5.1 General
81 69 High-temperature structures
69.1 Introduction
69.1.1 Applications
69.1.2 Performance
69.1.3 High-temperature materials
82 69.1.4 Development approach
69.2 Functions
69.2.1 General
83 69.2.2 Aerodynamic heating
69.2.2.1 Heat flux
69.2.2.2 Other factors
84 69.2.3 Propulsive power generation
69.2.3.1 Fuels
69.2.3.2 Temperature
69.2.3.3 Spaceplanes
69.2.3.4 Other design factors
85 69.3 Operating environments
69.4 Integration
86 69.5 Heat management
69.6 Life expectancy
69.6.1 General
69.6.2 Launcher
69.6.3 Spaceplane
87 69.6.4 Satellite
69.7 Materials selection
69.8 Manufacturing
88 69.9 Applications
69.9.1 Future reusable launch vehicles
69.9.1.1 European perspectives and objectives
89 69.9.2 Flight-vehicle dependent
69.9.2.1 Summary of concept vehicles
90 69.9.2.2 Summary of high-temperature structural materials
69.9.2.3 Summary of hypersonic engine materials technologies
93 69.9.3 Non-vehicle dependent
69.9.3.1 General
94 69.9.3.2 Technologies
96 69.9.4 Summary of European capabilities
97 69.10 References
69.10.1 General
99 70 Thermo-structural designs
70.1 Introduction
70.1.1 General
70.1.2 Single mission
100 70.1.3 Reusable vehicles
70.2 Spaceplanes
70.2.1 Hermes
70.2.2 HOPE
101 70.2.3 Single- and two-stage-to-orbit
70.3 Hermes
102 70.4 HOPE
106 70.5 HOTOL
108 70.6 SÄNGER
109 70.7 National aerospace plane (NASP)
111 70.8 Demonstrator panels
70.8.1 General
70.8.2 NASP
70.9 Nose cones
70.9.1 General
70.9.2 Shuttle orbiter
113 70.9.3 Hermes
115 70.9.4 HOPE
70.9.5 NASP
70.9.6 HOTOL
116 70.9.7 SÄNGER
70.9.8 X-38
117 70.10 Wing leading edges (WLE)
70.10.1 General
70.10.2 Shuttle orbiter
70.10.3 Buran
119 70.10.4 Hermes
120 70.10.5 HOPE
70.10.6 Others
121 70.11 Box sections
70.11.1 NASP
70.11.2 Hermes
122 70.12 Cryogenic tanks
70.13 Heat shield designs
125 70.14 Air inlet-intakes
126 70.15 Earth re-entry capsules
128 70.16 Manned re-entry vehicles
129 70.17 Deep space missions
70.17.1 CNSR ROSETTA: Earth return capsule
130 70.18 Mars landers
70.18.1 General
70.18.2 NASA Pathfinder/MESUR network landers
131 70.18.3 MARSNET
70.19 Cassini-Huygens
70.19.1 General
70.19.2 C-C aerobrake (heat shield)
132 70.19.3 Nose cap front shield with AQ60
70.20 Planetary probes
70.21 Aerobrake designs
70.21.1 General
70.21.2 NASA/ESA Cassini-Huygens mission
134 70.22 PRORA: USV – unmanned space vehicle
70.22.1 Background
70.22.1.1 RLV development approach
70.22.1.2 PRORA: Italian national aerospace research programme
135 70.22.2 USV programme
70.22.2.1 Objectives
70.22.2.2 Technologies
136 70.22.2.3 USV programme structure
70.22.2.4 USV programme missions
70.22.3 USV systems and flight test beds
70.22.3.1 General
70.22.3.2 FTB _1
137 70.22.3.3 FTB _2
70.22.3.4 FTB _3
70.22.4 External configuration of FTB_1 and FTB_2
70.22.4.1 General
70.22.4.2 Design drivers
70.22.4.3 Geometry
138 70.22.5 External configuration of FTB_3
70.22.5.1 General
70.22.5.2 Design drivers
139 70.22.5.3 Geometry
140 70.23 X-38 Body flap
70.23.1 Background
70.23.1.1 Programme
141 70.23.1.2 European participation
70.23.1.3 CMC key technologies
142 70.23.2 Body flaps
70.23.2.1 General
70.23.2.2 Construction
70.23.2.3 OPC – oxidation protection coating
143 70.23.3 Mechanical fasteners
144 70.23.4 CMC to metal attachment
145 70.23.5 Ceramic bearings
146 70.23.6 Ceramic seals
147 70.24 X-38 Nose cap
70.24.1 Background
148 70.24.2 Concept
70.24.2.1 General
70.24.2.2 IFI
70.24.2.3 HTI
70.24.3 Thermal profiles
149 70.24.4 Flexible insulation design
150 70.24.5 Integration and qualification testing
70.24.5.1 Insulation
70.24.5.2 Assembly
151 70.24.5.3 Thermal qualification test
70.24.5.4 Disassembly and visual inspection
152 70.24.5.5 Conclusions
70.24.6 Summary
70.24.6.1 Development
70.24.6.2 Status
153 70.25 Aerobrake: Deployable CMC decelerator
70.25.1 Background
70.25.1.1 Planetary missions
70.25.1.2 Objectives
154 70.25.2 Mars ISRU mission ‘in-situ resource unit’
70.25.3 Mars ISRU mission – Concept
70.25.3.1 Aero-assist aeroshell configuration
70.25.3.2 Central heat shield
155 70.25.3.3 Foldable decelerator
157 70.25.3.4 Unfolding and deployment
70.25.4 Mars ISRU mission – Environmental aspects
70.25.4.1 Micrometeoroids and debris impact
70.26 References
70.26.1 General
162 71 Thermal protection systems
71.1 Introduction
71.1.1 Application
71.1.1.1 Structures
163 71.1.1.2 Propulsion systems
71.1.2 European development programmes
71.1.2.1 Status
71.1.2.2 Examples
164 71.1.3 Concepts
166 71.1.4 Non load-carrying TPS
71.1.5 Load-carrying TPS
167 71.1.6 Reusable structures
168 71.2 Cooling modes
71.2.1 General
71.2.2 Passive TPS
71.2.2.1 Heat sinks
169 71.2.2.2 Ablatives
71.2.2.3 Insulation systems
71.2.3 Active cooling concepts
71.2.3.1 Gas flow
71.2.3.2 Cryogenic fuels
170 71.2.3.3 Liquid coolants
71.3 Early re-entry capsules
172 71.4 Ablative designs
71.4.1 General
173 71.4.2 Programmes
71.4.3 Materials
71.4.3.1 Acusil: Low-density, silicone-based ablatives
174 71.4.3.2 ALS051: Medium-density, silicone-based ablatives
175 71.4.3.3 Epoxy resin and cork ablators
176 71.4.3.4 SPA – Surface protected ablator
71.5 Space Shuttle orbiter
71.5.1 General
177 71.5.2 Materials and configurations
181 71.5.3 In-Service TPS Performance
71.5.3.1 Surface damage
71.5.3.2 Columbia
71.6 Buran
71.6.1 General
183 71.6.2 Materials and configurations
71.7 Advanced carbon reinforced composites
71.7.1 Carbon-carbon composites
71.7.2 ACC – Advanced carbon-carbon
184 71.7.3 Aerospatiale – Aerotiss® 2.5D
185 71.7.4 Carbon-silicon carbide composites
187 71.8 Durable metallic TPS
71.8.1 General
188 71.8.2 Multiwall TPS
189 71.8.3 Developments
71.8.3.1 General
71.8.3.2 Construction
190 71.8.3.3 Mass distribution
71.8.3.4 Limitations
71.8.3.5 Surface emissivity
71.8.3.6 Static mechanical tests
191 71.8.3.7 Acoustic noise test
71.9 Titanium-based composites
71.9.1 NASP
71.10 Internal multiscreen insulation (IMI)
71.10.1 Concept
71.10.1.1 General
71.10.1.2 Materials and construction
193 71.10.1.3 Theory
194 71.10.2 Development and characterisation
71.10.2.1 General
71.10.2.2 Thermal tests
195 71.10.2.3 Material characterisation
71.10.2.4 Mechanical performance
71.10.2.5 Integration and assembly tests
71.10.2.6 Non-destructive inspection
71.10.2.7 Results
196 71.10.3 Potential applications
197 71.11 Flexible external insulation (FEI)
71.11.1 General
71.11.2 Design concept
71.11.3 Key features
198 71.11.4 Product range
199 71.11.5 Hermes
71.11.5.1 General
200 71.11.5.2 Prequalification tests
71.11.5.3 Status
71.11.6 MSTP programme
71.11.6.1 General
71.11.6.2 Crew transfer vehicle (CTV) specification
201 71.11.6.3 FEI characterisation
71.11.6.4 Structural tests
71.11.6.5 Material and process characterisation
202 71.11.6.6 Design verification
203 71.11.6.7 Status
71.11.7 ARD programme
71.11.7.1 General
71.11.7.2 Design verification
71.11.7.3 Status
71.11.8 Future reusable vehicles
204 71.11.9 Verified performance
205 71.11.10 IFI – Internal flexible insulation development
71.11.10.1 Background
71.11.10.2 Concept
206 71.11.10.3 IFI materials and configuration
207 71.12 CMC shingles
71.12.1 Hermes design concept
71.12.1.1 General
208 71.12.1.2 Shingle construction
71.12.1.3 Performance criteria
209 71.12.2 TETRA/X-38 programme panels
71.12.2.1 General
210 71.12.2.2 Large C-SiC panel
71.12.2.3 Lightweight shingles
211 71.12.3 SPFI – Surface protected flexible insulation
71.12.3.1 Background
71.12.3.2 Concept
212 71.12.3.3 Description
213 71.12.3.4 Characteristics
71.12.3.5 Structural design
214 71.12.3.6 Thermal design
216 71.12.3.7 Properties
217 71.12.3.8 Structural tests
219 71.12.3.9 Thermal tests
221 71.12.3.10 SPFI performance summary
71.12.3.11 SHEFEX flight experiment
222 71.13 Heat pipes
71.13.1 General
224 71.13.2 Shuttle-type heat pipe cooled wing leading edge
71.13.3 Sodium-Hastelloy-X heat pipe for advanced space transportation system
225 71.13.4 Refractory metal-CMC heat pipe for NASP
226 71.14 Cooled panels
71.14.1 General
227 71.14.2 Demonstrator units
228 71.14.3 Active cooling on NASP
71.14.3.1 General
71.14.3.2 Titanium D-groove panels
229 71.14.3.3 Beryllium skinned tube panels
71.14.3.4 Beryllium platelet components
230 71.14.3.5 Graphite fibre-reinforced copper panel
71.14.3.6 C-SiC/Refractory metal tube heat-exchangers
71.15 Beryllium TPS
71.15.1 General
71.15.2 Cassini-Huygens heat shield: Phase A configuration
71.15.2.1 Main components
231 71.15.2.2 Material selection
71.15.2.3 Operating conditions
232 71.16 Aerobrakes
71.17 Heat shields
71.17.1 General
71.17.2 SEPCORE® TPS concept
233 71.17.3 Ceramic heatshield assembly (CHA)
71.17.3.1 General
71.17.3.2 Design concept
234 71.17.3.3 Design drivers
71.17.3.4 Detailed design
235 71.17.3.5 Standard panel configuration
236 71.17.3.6 Insulation
71.17.3.7 Fittings
71.17.3.8 Mass breakdown
237 71.17.3.9 Verification by analysis
238 71.17.3.10 Panel manufacture
71.17.3.11 Panel testing
241 71.17.3.12 Leading edge element
71.17.4 MIRKA – Micro re-entry capsule
71.17.4.1 General
242 71.17.4.2 Design concept
243 71.17.4.3 Test programme
71.17.4.4 Flight performance
71.17.4.5 Proposed applications
71.17.5 ALSCAP – Alternative low-cost, short-manufacturing-cycle ceramic assessment programme
71.17.5.1 General
244 71.17.5.2 Materials and manufacturing
71.17.5.3 Characterisation and testing
245 71.17.5.4 Programme conclusions
246 71.18 Aeroshell
71.18.1 General
71.18.2 Semi-integrated aeroshell TPS (S.I.A.T)
71.18.3 Demonstrator aeroshell design
71.18.3.1 General
247 71.18.3.2 General architecture
248 71.18.3.3 Thermal
250 71.18.3.4 Critical load cases
71.18.3.5 Material samples test campaigns
251 71.18.3.6 Manufacture
71.18.3.7 Testing
252 71.18.3.8 Conclusions
71.19 Cryogenic tanks
71.19.1 General
253 71.19.2 European programmes
71.19.2.1 FESTIP
71.19.2.2 C-SiC oxidation protection
71.19.2.3 IMI internal multiscreen insulation
254 71.19.2.4 Refractory metals and aluminide oxidation protection
71.19.2.5 ODS alloys
71.19.3 Concepts: TPS panel array
71.19.4 Concepts: LH tank cryogenic insulation
256 71.20 TPS mass budgets
71.20.1 Allocation
257 71.20.2 Examples
71.21 TPS verification
71.22 Polymer foam cryogenic insulation
71.22.1 General
71.22.1.1 Expendable ‘single-shot’ launchers
71.22.1.2 Reusable launchers
71.22.2 Polymer foam characteristics
258 71.22.3 Properties
71.22.3.1 Mechanical
71.22.3.2 Physical
259 71.22.4 Materials
71.22.4.1 Material selection
260 71.22.4.2 Evaluation
71.22.4.3 Foam structure
71.22.4.4 Foam mechanical properties
261 71.22.5 Ranking of polymer foam cryogenic insulation
71.22.5.1 Criteria
262 71.22.5.2 Summary
263 71.22.6 Further work
71.23 High temperature insulation (HTI)
71.23.1 Background
264 71.23.2 Development factors
71.23.2.1 Objectives
71.23.2.2 Technology-related
71.23.2.3 Technical-related
265 71.23.2.4 Configuration-related
71.23.3 Development apoproach
71.23.3.1 Test philosophy and plan
268 71.23.4 Materials
71.23.5 Testing
71.23.5.1 General
71.23.5.2 Thermal stability
269 71.23.5.3 Material selection based on thermal stability
270 71.23.5.4 Temperature gradient test
272 71.23.6 Summary
71.24 References
71.24.1.1 General
282 72 SPF/DB titanium designs
72.1 Introduction
72.1.1 General
72.1.2 Aircraft components
72.1.3 Space applications
283 72.2 Basic SPF/DB process
72.2.1 Superplastic forming
72.2.2 Diffusion bonding
285 72.3 Process attributes
286 72.4 Titanium alloys
287 72.5 Aluminium alloys
288 72.6 Access doors and ducting
72.6.1 General
72.6.2 Slat track/jack cans
289 72.6.3 Underwing access doors
290 72.6.4 Other SPF/DB components
72.7 Spars and stiffened panels
291 72.8 Struts and cylinders
72.9 Leading edges and lateral fins
292 72.10 Firewalls
72.11 Pressure vessels
293 72.12 Cost aspects
72.13 European facilities
72.14 References
72.14.1 General
295 73 Propulsion technologies
73.1 Introduction
73.2 Propulsion unit requirements
73.2.1 Launcher engines
73.2.1.1 Ariane 5 single mission launcher
73.2.2 Shuttle engines
73.2.3 Spaceplane engines
296 73.2.4 Thrusters
73.2.5 Nozzles
73.3 Fuels
73.3.1 General
73.3.2 Solid propellants
73.3.3 LH/LOX
297 73.3.4 Monopropellants
73.3.5 Bipropellants
73.4 Ariane 5
73.4.1 General
73.4.2 MPS solid rocket motor
73.4.2.1 General
298 73.4.2.2 MPS specification
73.5 Vulcain engine
73.5.1 General
299 73.5.2 Specification
73.5.3 Materials
300 73.6 HM 7 engine
73.6.1 General
301 73.6.2 Nozzle geometry
73.7 Mage 2 motor
73.8 Nozzles
302 73.9 Space Shuttle Main Engine (SSME)
73.10 Air breathing engines
73.10.1 General
303 73.10.2 NASP nozzle development
73.10.3 European ramjet technology
73.11 CMC rocket stator
305 73.12 Metal thrusters
73.13 CMC thrusters
73.14 References
73.14.1 General
308 74 Protective coatings
74.1 Introduction
309 74.2 Coating functions
74.2.1 General
310 74.2.2 Application requirements
74.2.2.1 Spaceplane aerodynamic re-entry surfaces
74.2.2.2 Propulsion systems
74.3 Passivation
74.3.1 General
311 74.3.2 Materials
74.3.3 Coating adhesion
312 74.4 Basic coating types
74.4.1 General
74.4.2 Diffusion coatings
74.4.3 Overlay coatings
74.4.3.1 General
74.4.3.2 MCrAlY type
74.4.3.3 Thermal barrier coatings (TBC)
313 74.5 Coating processes
74.5.1 General
74.5.2 Slurry coating
74.5.2.1 General´
74.5.2.2 Applications
74.5.3 Physical vapour deposition (PVD)
74.5.3.1 General
314 74.5.3.2 Applications
74.5.4 Enhanced physical vapour deposition (PVD)
74.5.5 Thermal spraying
74.5.5.1 General
74.5.5.2 Applications
74.5.6 Chemical vapour deposition (CVD)
74.5.6.1 General
315 74.5.6.2 Applications
74.5.7 Enhanced chemical vapour deposition (CVD)
74.5.8 Other processes
316 74.6 Coatings: Titanium components
74.6.1 NASP
74.6.1.1 General
74.6.1.2 Reactive slurry coatings
74.6.1.3 Multi-layer glass coatings
74.7 Coatings: Superalloy components
74.7.1 General
317 74.7.2 Aluminide diffusion coatings
74.7.3 MCrAlY overlay coatings
74.7.3.1 General
74.7.3.2 Oxidation resistance
318 74.7.3.3 Hot corrosion
74.8 Thermal barrier coatings (TBC)
74.8.1 Ni-based superalloy components
74.8.1.1 General
74.8.1.2 Coating formulation
74.8.1.3 Coating application
74.8.2 Shuttle Main Engine HPFTP blades
319 74.8.3 Fibre-reinforced TBC’s
74.8.4 Coating technology
74.8.5 Seals
74.9 Carbon-Carbon: Oxidation protection
74.9.1 General
74.9.2 Applications
74.9.3 Coating systems
320 74.9.4 Basic problem
74.10 Multiplex coatings
74.10.1 General
321 74.10.2 Constituents
74.10.2.1 Inhibited C-C substrate
74.10.2.2 Surface treatment
74.10.2.3 Primary oxidation barrier
322 74.10.2.4 Outer glaze
74.10.3 Application examples
74.10.3.1 Buran and Space Shuttle
74.10.3.2 Hermes
323 74.10.3.3 NASP
74.11 Coatings: C-SiC and SiC-SiC
74.11.1 General
74.11.2 C-SiC
74.11.3 SiC-SiC
324 74.12 Carbon-Carbon: Surface coatings
74.12.1 Dimensionally stable structures
74.12.1.1 General
325 74.12.1.2 Types of coatings
326 74.12.1.3 Reflective coating deposition methods
327 74.12.1.4 Reflective coating quality
74.12.1.5 Coated DSS manufacturing methods
328 74.13 References
74.13.1 General
332 75 Seal technology
75.1 Introduction
75.1.1 Uses
75.1.2 Structural assemblies
333 75.1.3 Dynamic seals
75.1.4 Materials
75.2 Structural seals
334 75.3 Seal materials
75.3.1 General
75.3.2 Elastomers
75.3.2.1 Essential characteristics
335 75.3.2.2 Crosslinking
75.3.2.3 Temperature effects and glass transition
337 75.3.3 Types of elastomers
75.3.3.1 Formulation
75.3.3.2 Base elastomer-types and characteristics
338 75.3.3.3 Tensile
339 75.3.3.4 Fluid resistance: Liquids
340 75.3.3.5 Fluid resistance: Gases
75.3.3.6 Thermal cycling
341 75.3.3.7 Radiation
75.3.3.8 Vacuum
75.3.4 Visoelasticity
342 75.3.5 Physical properties
75.3.5.1 General
343 75.3.5.2 Hardness and elastic modulus
75.3.5.3 Tensile strength and elongation at break
344 75.3.5.4 Tear strength
75.3.5.5 Resilience and dynamic properties
346 75.3.5.6 Compression set
75.3.5.7 Physical creep and stress relaxation
349 75.3.6 Chemical properties
75.3.6.1 Heat resistance
350 75.3.6.2 Low temperature resistance
351 75.3.6.3 Chemical resistance
352 75.3.7 Rubber-to-metal bonding
353 75.3.8 Engineering design with elastomers
75.3.8.1 Fundemental aspects
75.3.8.2 Shear stiffness of simple blocks
75.3.8.3 Compression stiffness of simple blocks
355 75.3.8.4 Compression stiffness of laminated blocks
75.3.8.5 Torsion stiffness
356 75.3.9 Finite element analysis
358 75.3.10 Applications
75.3.10.1 General
75.3.10.2 Vibration isolation
75.3.10.3 Seals
359 75.3.11 Thermoplastic elastomers
75.4 Energised metal seals
75.4.1 General
360 75.4.2 Materials
361 75.5 NASP engine developments
75.5.1 General
75.5.2 Developments
75.5.2.1 Ceramic Wafer Seal
362 75.5.2.2 Braided Ceramic Rope Seal
75.5.2.3 ‘V’-ring and ‘U’-ring Seals
75.6 Fibrous seals
363 75.7 Elastomeric seals
75.7.1 Materials
75.7.1.1 General
75.7.1.2 Aerospace
75.7.2 Design aspects
364 75.7.3 Causes of leakage
75.7.3.1 Static seals
75.7.3.2 Pressure-energised seals
75.7.3.3 Effect of temperature
75.7.3.4 Effect of pressure
365 75.7.3.5 Changes in fluids
75.7.3.6 Explosive decompression
75.7.3.7 Testing aspects
75.7.4 Aerospace applications
366 75.8 References
75.8.1 General
367 75.8.2 ECSS standards
368 75.8.3 ASTM standards
75.8.4 ISO standards
369 76 Integrity control of high temperature structures
76.1 Introduction
76.2 Materials
76.2.1 Integrity control
370 76.2.2 Fracture control
76.3 Failure characteristics
76.3.1 Advanced alloy systems
76.3.2 Composite materials
76.3.2.1 General
76.3.2.2 Metal matrix
76.3.2.3 Glass and ceramic matrix
76.3.2.4 Fibre-to-matrix interface
371 76.4 High temperature
76.5 Coatings
76.5.1 General
76.5.2 Manufacturing
76.5.3 Inspection
372 76.6 Considerations
76.6.1 Mass optimisation
76.6.2 Approach
76.6.2.1 General
76.6.2.2 New materials
373 76.7 Case study: Developments in integrity control
375 76.8 Case study: Phase 1 – Material characterisation
76.8.1 General
76.8.2 Materials, manufacturing and NDT
76.8.2.1 General
76.8.2.2 Carbon-Carbon
76.8.2.3 C-SiC and SiC-SiC
76.8.2.4 Introduced defects
376 76.8.3 Defect detection by selected NDI methods
76.8.3.1 General
76.8.3.2 Green part
76.8.3.3 Final pyrolysed high temperature composite
76.8.3.4 Protective coatings
377 76.8.3.5 Unsuccessful techniques
76.8.4 Maximum applied stresses
378 76.8.5 High-temperature tests
76.8.5.1 Test regime
76.8.5.2 Four point bending tests
379 76.8.6 Residual strengths
76.8.6.1 SiC-SiC
76.8.6.2 C-SiC
76.8.6.3 C-C
76.8.7 Analysis
76.8.8 Conclusions
380 76.9 Case study: Phase 2 – Structural sub-component behaviour
76.10 References
76.10.1 General
381 77 Defect types
77.1 Introduction
382 77.2 Advanced metal alloys
77.2.1 General
77.2.2 ODS alloys
77.2.3 SPF alloys
77.3 Metal matrix composites
77.3.1 General
77.3.2 Standard product forms
383 77.3.3 Near-net shape manufacture
384 77.4 Ceramic matrix composites
77.5 Coatings
385 77.6 Joints
77.6.1 General
77.6.2 Uses
386 77.6.3 Mechanical fastened joints
77.6.4 Fusion joints
387 77.7 Structural parts
77.7.1 General
77.7.2 Composite materials
77.7.2.1 Shaping and machining
77.7.2.2 Near-net shape manufacture
77.8 In service
389 77.9 References
77.9.1 General
390 78 Damage tolerance
78.1 Introduction
78.1.1 Materials
78.1.2 Structure
78.1.3 Fracture mechanics
78.1.4 Initial material quality (IMQ)
391 78.2 MMC: Particulate and whisker reinforced
78.2.1 Fatigue behaviour
78.2.1.1 General
392 78.2.1.2 Particulate size
78.2.2 Fracture mechanics
393 78.3 CMC: Whisker reinforced
78.4 MMC: Continuous fibre reinforced
78.4.1 Fatigue
78.4.1.1 General
394 78.4.1.2 Single crack failures
78.4.1.3 Matrix failure
395 78.5 CMC: Continuous fibre reinforced
78.5.1 Failure characteristics
78.5.1.1 General
78.5.1.2 Fibre to matrix interface
396 78.5.1.3 Fracture characterisation
78.6 Coatings
78.6.1 Coating performance
397 78.6.2 Process and material selection
78.6.2.1 General
78.6.2.2 Microstructure
78.6.3 Failure characteristics
398 78.7 References
78.7.1 General
78.7.2 ECSS standards
399 79 Fracture control
79.1 Introduction
79.1.1 Application
79.1.1.1 Alloys
79.1.1.2 Brittle materials
79.2 References
79.2.1 General
79.2.2 ECSS standards
400 80 NDT techniques
80.1 Introduction
401 80.2 Advanced metal alloys
80.2.1 General
80.2.2 Brittle materials
80.2.3 Multi-phase microstructures
80.3 Metal matrix composites
402 80.4 Carbon-Carbon and ceramic matrix composites
405 80.5 Coatings
80.6 Joints
80.6.1 General
80.6.2 Fused joints
406 80.6.3 Mechanically fastened and interlock joints
80.6.3.1 TPS structures
80.6.3.2 Thrusters and nozzles
80.7 Fusion joints
80.7.1 General
80.7.2 Thin-walled seam welded tubes
407 80.7.3 Diffusion bonded joints
80.8 References
80.8.1 General
410 81 High-temperature testing
81.1 Introduction
81.2 Purpose of testing
411 81.3 Material behaviour
81.3.1 Basic fracture modes
81.3.2 Metal matrix composites
81.3.2.1 Particulate reinforced (MMCp)
81.3.2.2 Fibre reinforced (MMCf)
81.3.3 Inorganic and ceramic matrix composites
81.3.3.1 Fibre reinforced (ICMCf)
412 81.4 Degradation mechanisms
81.4.1 Materials
81.4.1.1 Metal compositions
81.4.1.2 Ceramic compositions
81.4.2 Degradation rate
413 81.5 Coupon testing
81.5.1 General
81.5.2 Single-fibre tests
81.5.3 Fibre push through
81.5.4 Net-shape components
81.5.5 Flexural and ILSS testing
414 81.5.6 Small coupon tests
81.5.7 Machining
81.5.8 Extensometry
415 81.5.9 End tabs
81.5.10 Coatings
81.5.11 Material gradation
81.5.12 Specimen alignment
81.5.13 Linear elasticity
81.6 Mechanical properties
81.6.1 General
416 81.6.2 Tensile
81.6.2.1 General
81.6.2.2 Particulate reinforced composite
81.6.2.3 Continuous fibre-reinforced composites
417 81.6.3 Compression
81.6.3.1 Continuous fibre-reinforced composites
418 81.6.4 Shear
81.6.5 Open-hole tension
81.6.6 Fatigue
81.7 Fracture toughness
419 81.8 Physical properties
81.8.1 General
81.8.2 Standards
81.9 Status of test standards
81.9.1 General
420 81.9.2 Metal matrix composites
81.9.3 Ceramic matrix composites
81.9.3.1 CEN TC 184 activities
421 81.9.3.2 Continuous fibre reinforced ceramic composites
81.9.3.3 Short fibre reinforced ceramic composites
81.9.3.4 Ceramic coatings
81.9.3.5 Other properties
424 81.10 Demonstrator testing
425 81.11 References
81.11.1 General
BSI PD CEN/TR 17603-32-06:2022
$215.11