BSI PD CEN/TR 17603-32-06:2022
$215.11
Space engineering. Structural materials handbook – Fracture and material modelling, case studies and design and integrity control and inspection
Published By | Publication Date | Number of Pages |
BSI | 2022 | 426 |
The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies. The Structural materials handbook contains 8 Parts. A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8. The parts are as follows: Part 1 Overview and material properties and applications Clauses 1 ‐ 9 Part 2 Design calculation methods and general design aspects Clauses 10 ‐ 22 Part 3 Load transfer and design of joints and design of structures Clauses 23 ‐ 32 Part 4 Integrity control, verification guidelines and manufacturing Clauses 33 ‐ 45 Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints Clauses 46 ‐ 63 Part 6 Fracture and material modelling, case studies and design and integrity control and inspection Clauses 64 ‐ 81 Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies Clauses 82 ‐ 107 Part 8 Glossary NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
29 | 64 Behaviour of advanced composites 64.1 Introduction |
30 | 64.2 Summary of material behaviour 64.2.1 Metal matrix composites 64.2.1.1 Particulate reinforced (MMCp) 64.2.1.2 Fibre reinforced (MMCf) |
31 | 64.2.2 Inorganic ceramic matrix composites 64.2.2.1 Fibre reinforced (ICMCf) 64.3 Significant behavioural characteristics 64.3.1 General 64.3.2 Modulus mismatch |
32 | 64.3.3 Matrix-to-reinforcement interface |
33 | 64.3.4 In-situ fibre strength 64.3.5 CTE mismatch |
34 | 64.3.6 Thermal history and residual stresses 64.3.7 Multiple cracking 64.3.7.1 Fibre reinforced materials 64.3.7.2 Particulate reinforced materials 64.3.8 Thermo-mechanical fatigue (TMF) 64.4 Basic fracture characteristics 64.4.1 General |
35 | 64.4.2 Particulate reinforced MMC |
36 | 64.4.3 Fibre reinforced MMC |
37 | 64.4.4 Fibre reinforced CMC 64.4.5 Defining design values 64.4.5.1 General |
38 | 64.4.5.2 Failure criteria 64.5 Failure criteria for CMC 64.5.1 Introduction 64.5.2 Design aspects 64.5.2.1 General 64.5.2.2 Materials |
39 | 64.5.2.3 Failure loads 64.5.2.4 Test and analysis |
40 | 64.5.2.5 Load introduction points |
41 | 64.6 References 64.6.1 General |
42 | 65 Particulate reinforced metals 65.1 Introduction 65.1.1 Materials 65.1.1.1 General 65.1.1.2 Microstructure 65.1.2 Composites 65.1.2.1 Matrix |
43 | 65.1.3 Particulate reinforcement 65.1.3.1 Types 65.1.3.2 Size |
44 | 65.2 Damage mechanisms 65.2.1 Unnotched specimen |
45 | 65.2.2 Notched specimen 65.2.3 Influence of particles |
46 | 65.2.4 Composite performance 65.3 Failure modes and fracture behaviour 65.3.1 Matrix effects 65.3.1.1 General |
47 | 65.3.1.2 Duplex microstructures 65.3.2 Failure mode studies 65.3.3 Particulate shape and aspect ratio |
49 | 65.3.4 Particulate fracture 65.3.5 Void nucleation and growth |
50 | 65.3.6 Fracture toughness 65.3.6.1 General 65.3.6.2 Common terms |
51 | 65.4 Thermo-mechanical fatigue (TMF) and creep 65.4.1 Residual stresses 65.4.2 Temperature 65.4.3 Superplasticity 65.4.4 Applications 65.5 References 65.5.1 General |
54 | 66 Fibre reinforced metals 66.1 Introduction 66.1.1 Materials 66.1.1.1 General 66.1.1.2 Matrix |
55 | 66.1.1.3 Fibre reinforcement 66.2 Damage mechanisms 66.2.1 General 66.2.2 Effect of lay-up 66.2.2.1 General 66.2.2.2 Boron reinforced aluminium 66.2.2.3 Titanium matrix composites |
56 | 66.3 Failure modes 66.3.1 General 66.3.2 Matrix dominated failure 66.3.3 Fibre-dominated damage 66.3.4 Self-similar damage growth |
57 | 66.3.5 Fibre-matrix interfacial failures 66.4 Thermo-mechanical and creep response 66.4.1 General |
58 | 66.4.2 Application 66.5 References 66.5.1 General |
60 | 67 Inorganic ceramic matrix composites 67.1 Introduction 67.1.1 General |
61 | 67.1.2 Matrix 67.1.3 Interface 67.1.4 Fibres 67.2 Damage mechanisms 67.2.1 Material effects 67.2.2 Microcracking |
63 | 67.2.3 Porosity |
64 | 67.2.4 Manufacturing and in-service effects 67.2.5 Crack propagation |
65 | 67.3 Fracture behaviour 67.3.1 Toughness parameters 67.3.1.1 General 67.3.1.2 Testing |
70 | 67.3.2 Test specimens 67.3.2.1 Single edge notched beam (SENB) specimens 67.3.3 ‘R’ curves |
72 | 67.4 References |
73 | 68 Modelling advanced materials 68.1 Introduction 68.1.1 Polymer composites 68.1.2 Metal matrix composites 68.1.2.1 General 68.1.2.2 Fibre reinforced MMC 68.1.2.3 Particulate MMC 68.1.3 Inorganic ceramic matrix materials |
74 | 68.1.4 Summary of models 68.1.4.1 General 68.1.4.2 Law of mixtures 68.1.4.3 Shear lag model 68.1.4.4 Laminated plate model 68.1.4.5 Eshelby’s models 68.1.4.6 Other models |
75 | 68.2 Particulate reinforced metals 68.2.1 Use of models 68.3 Fibre reinforced metals 68.3.1 Use of models |
76 | 68.4 Inorganic ceramic matrix composites 68.4.1 Use of models 68.4.1.1 General 68.4.1.2 On-set of matrix cracking 68.4.1.3 Distance between cracks |
77 | 68.4.1.4 Crack ‘closure’ effect 68.4.1.5 Crack growth parameters |
79 | 68.5 References 68.5.1 General |
81 | 69 High-temperature structures 69.1 Introduction 69.1.1 Applications 69.1.2 Performance 69.1.3 High-temperature materials |
82 | 69.1.4 Development approach 69.2 Functions 69.2.1 General |
83 | 69.2.2 Aerodynamic heating 69.2.2.1 Heat flux 69.2.2.2 Other factors |
84 | 69.2.3 Propulsive power generation 69.2.3.1 Fuels 69.2.3.2 Temperature 69.2.3.3 Spaceplanes 69.2.3.4 Other design factors |
85 | 69.3 Operating environments 69.4 Integration |
86 | 69.5 Heat management 69.6 Life expectancy 69.6.1 General 69.6.2 Launcher 69.6.3 Spaceplane |
87 | 69.6.4 Satellite 69.7 Materials selection 69.8 Manufacturing |
88 | 69.9 Applications 69.9.1 Future reusable launch vehicles 69.9.1.1 European perspectives and objectives |
89 | 69.9.2 Flight-vehicle dependent 69.9.2.1 Summary of concept vehicles |
90 | 69.9.2.2 Summary of high-temperature structural materials 69.9.2.3 Summary of hypersonic engine materials technologies |
93 | 69.9.3 Non-vehicle dependent 69.9.3.1 General |
94 | 69.9.3.2 Technologies |
96 | 69.9.4 Summary of European capabilities |
97 | 69.10 References 69.10.1 General |
99 | 70 Thermo-structural designs 70.1 Introduction 70.1.1 General 70.1.2 Single mission |
100 | 70.1.3 Reusable vehicles 70.2 Spaceplanes 70.2.1 Hermes 70.2.2 HOPE |
101 | 70.2.3 Single- and two-stage-to-orbit 70.3 Hermes |
102 | 70.4 HOPE |
106 | 70.5 HOTOL |
108 | 70.6 SÄNGER |
109 | 70.7 National aerospace plane (NASP) |
111 | 70.8 Demonstrator panels 70.8.1 General 70.8.2 NASP 70.9 Nose cones 70.9.1 General 70.9.2 Shuttle orbiter |
113 | 70.9.3 Hermes |
115 | 70.9.4 HOPE 70.9.5 NASP 70.9.6 HOTOL |
116 | 70.9.7 SÄNGER 70.9.8 X-38 |
117 | 70.10 Wing leading edges (WLE) 70.10.1 General 70.10.2 Shuttle orbiter 70.10.3 Buran |
119 | 70.10.4 Hermes |
120 | 70.10.5 HOPE 70.10.6 Others |
121 | 70.11 Box sections 70.11.1 NASP 70.11.2 Hermes |
122 | 70.12 Cryogenic tanks 70.13 Heat shield designs |
125 | 70.14 Air inlet-intakes |
126 | 70.15 Earth re-entry capsules |
128 | 70.16 Manned re-entry vehicles |
129 | 70.17 Deep space missions 70.17.1 CNSR ROSETTA: Earth return capsule |
130 | 70.18 Mars landers 70.18.1 General 70.18.2 NASA Pathfinder/MESUR network landers |
131 | 70.18.3 MARSNET 70.19 Cassini-Huygens 70.19.1 General 70.19.2 C-C aerobrake (heat shield) |
132 | 70.19.3 Nose cap front shield with AQ60 70.20 Planetary probes 70.21 Aerobrake designs 70.21.1 General 70.21.2 NASA/ESA Cassini-Huygens mission |
134 | 70.22 PRORA: USV – unmanned space vehicle 70.22.1 Background 70.22.1.1 RLV development approach 70.22.1.2 PRORA: Italian national aerospace research programme |
135 | 70.22.2 USV programme 70.22.2.1 Objectives 70.22.2.2 Technologies |
136 | 70.22.2.3 USV programme structure 70.22.2.4 USV programme missions 70.22.3 USV systems and flight test beds 70.22.3.1 General 70.22.3.2 FTB _1 |
137 | 70.22.3.3 FTB _2 70.22.3.4 FTB _3 70.22.4 External configuration of FTB_1 and FTB_2 70.22.4.1 General 70.22.4.2 Design drivers 70.22.4.3 Geometry |
138 | 70.22.5 External configuration of FTB_3 70.22.5.1 General 70.22.5.2 Design drivers |
139 | 70.22.5.3 Geometry |
140 | 70.23 X-38 Body flap 70.23.1 Background 70.23.1.1 Programme |
141 | 70.23.1.2 European participation 70.23.1.3 CMC key technologies |
142 | 70.23.2 Body flaps 70.23.2.1 General 70.23.2.2 Construction 70.23.2.3 OPC – oxidation protection coating |
143 | 70.23.3 Mechanical fasteners |
144 | 70.23.4 CMC to metal attachment |
145 | 70.23.5 Ceramic bearings |
146 | 70.23.6 Ceramic seals |
147 | 70.24 X-38 Nose cap 70.24.1 Background |
148 | 70.24.2 Concept 70.24.2.1 General 70.24.2.2 IFI 70.24.2.3 HTI 70.24.3 Thermal profiles |
149 | 70.24.4 Flexible insulation design |
150 | 70.24.5 Integration and qualification testing 70.24.5.1 Insulation 70.24.5.2 Assembly |
151 | 70.24.5.3 Thermal qualification test 70.24.5.4 Disassembly and visual inspection |
152 | 70.24.5.5 Conclusions 70.24.6 Summary 70.24.6.1 Development 70.24.6.2 Status |
153 | 70.25 Aerobrake: Deployable CMC decelerator 70.25.1 Background 70.25.1.1 Planetary missions 70.25.1.2 Objectives |
154 | 70.25.2 Mars ISRU mission ‘in-situ resource unit’ 70.25.3 Mars ISRU mission – Concept 70.25.3.1 Aero-assist aeroshell configuration 70.25.3.2 Central heat shield |
155 | 70.25.3.3 Foldable decelerator |
157 | 70.25.3.4 Unfolding and deployment 70.25.4 Mars ISRU mission – Environmental aspects 70.25.4.1 Micrometeoroids and debris impact 70.26 References 70.26.1 General |
162 | 71 Thermal protection systems 71.1 Introduction 71.1.1 Application 71.1.1.1 Structures |
163 | 71.1.1.2 Propulsion systems 71.1.2 European development programmes 71.1.2.1 Status 71.1.2.2 Examples |
164 | 71.1.3 Concepts |
166 | 71.1.4 Non load-carrying TPS 71.1.5 Load-carrying TPS |
167 | 71.1.6 Reusable structures |
168 | 71.2 Cooling modes 71.2.1 General 71.2.2 Passive TPS 71.2.2.1 Heat sinks |
169 | 71.2.2.2 Ablatives 71.2.2.3 Insulation systems 71.2.3 Active cooling concepts 71.2.3.1 Gas flow 71.2.3.2 Cryogenic fuels |
170 | 71.2.3.3 Liquid coolants 71.3 Early re-entry capsules |
172 | 71.4 Ablative designs 71.4.1 General |
173 | 71.4.2 Programmes 71.4.3 Materials 71.4.3.1 Acusil: Low-density, silicone-based ablatives |
174 | 71.4.3.2 ALS051: Medium-density, silicone-based ablatives |
175 | 71.4.3.3 Epoxy resin and cork ablators |
176 | 71.4.3.4 SPA – Surface protected ablator 71.5 Space Shuttle orbiter 71.5.1 General |
177 | 71.5.2 Materials and configurations |
181 | 71.5.3 In-Service TPS Performance 71.5.3.1 Surface damage 71.5.3.2 Columbia 71.6 Buran 71.6.1 General |
183 | 71.6.2 Materials and configurations 71.7 Advanced carbon reinforced composites 71.7.1 Carbon-carbon composites 71.7.2 ACC – Advanced carbon-carbon |
184 | 71.7.3 Aerospatiale – Aerotiss® 2.5D |
185 | 71.7.4 Carbon-silicon carbide composites |
187 | 71.8 Durable metallic TPS 71.8.1 General |
188 | 71.8.2 Multiwall TPS |
189 | 71.8.3 Developments 71.8.3.1 General 71.8.3.2 Construction |
190 | 71.8.3.3 Mass distribution 71.8.3.4 Limitations 71.8.3.5 Surface emissivity 71.8.3.6 Static mechanical tests |
191 | 71.8.3.7 Acoustic noise test 71.9 Titanium-based composites 71.9.1 NASP 71.10 Internal multiscreen insulation (IMI) 71.10.1 Concept 71.10.1.1 General 71.10.1.2 Materials and construction |
193 | 71.10.1.3 Theory |
194 | 71.10.2 Development and characterisation 71.10.2.1 General 71.10.2.2 Thermal tests |
195 | 71.10.2.3 Material characterisation 71.10.2.4 Mechanical performance 71.10.2.5 Integration and assembly tests 71.10.2.6 Non-destructive inspection 71.10.2.7 Results |
196 | 71.10.3 Potential applications |
197 | 71.11 Flexible external insulation (FEI) 71.11.1 General 71.11.2 Design concept 71.11.3 Key features |
198 | 71.11.4 Product range |
199 | 71.11.5 Hermes 71.11.5.1 General |
200 | 71.11.5.2 Prequalification tests 71.11.5.3 Status 71.11.6 MSTP programme 71.11.6.1 General 71.11.6.2 Crew transfer vehicle (CTV) specification |
201 | 71.11.6.3 FEI characterisation 71.11.6.4 Structural tests 71.11.6.5 Material and process characterisation |
202 | 71.11.6.6 Design verification |
203 | 71.11.6.7 Status 71.11.7 ARD programme 71.11.7.1 General 71.11.7.2 Design verification 71.11.7.3 Status 71.11.8 Future reusable vehicles |
204 | 71.11.9 Verified performance |
205 | 71.11.10 IFI – Internal flexible insulation development 71.11.10.1 Background 71.11.10.2 Concept |
206 | 71.11.10.3 IFI materials and configuration |
207 | 71.12 CMC shingles 71.12.1 Hermes design concept 71.12.1.1 General |
208 | 71.12.1.2 Shingle construction 71.12.1.3 Performance criteria |
209 | 71.12.2 TETRA/X-38 programme panels 71.12.2.1 General |
210 | 71.12.2.2 Large C-SiC panel 71.12.2.3 Lightweight shingles |
211 | 71.12.3 SPFI – Surface protected flexible insulation 71.12.3.1 Background 71.12.3.2 Concept |
212 | 71.12.3.3 Description |
213 | 71.12.3.4 Characteristics 71.12.3.5 Structural design |
214 | 71.12.3.6 Thermal design |
216 | 71.12.3.7 Properties |
217 | 71.12.3.8 Structural tests |
219 | 71.12.3.9 Thermal tests |
221 | 71.12.3.10 SPFI performance summary 71.12.3.11 SHEFEX flight experiment |
222 | 71.13 Heat pipes 71.13.1 General |
224 | 71.13.2 Shuttle-type heat pipe cooled wing leading edge 71.13.3 Sodium-Hastelloy-X heat pipe for advanced space transportation system |
225 | 71.13.4 Refractory metal-CMC heat pipe for NASP |
226 | 71.14 Cooled panels 71.14.1 General |
227 | 71.14.2 Demonstrator units |
228 | 71.14.3 Active cooling on NASP 71.14.3.1 General 71.14.3.2 Titanium D-groove panels |
229 | 71.14.3.3 Beryllium skinned tube panels 71.14.3.4 Beryllium platelet components |
230 | 71.14.3.5 Graphite fibre-reinforced copper panel 71.14.3.6 C-SiC/Refractory metal tube heat-exchangers 71.15 Beryllium TPS 71.15.1 General 71.15.2 Cassini-Huygens heat shield: Phase A configuration 71.15.2.1 Main components |
231 | 71.15.2.2 Material selection 71.15.2.3 Operating conditions |
232 | 71.16 Aerobrakes 71.17 Heat shields 71.17.1 General 71.17.2 SEPCORE® TPS concept |
233 | 71.17.3 Ceramic heatshield assembly (CHA) 71.17.3.1 General 71.17.3.2 Design concept |
234 | 71.17.3.3 Design drivers 71.17.3.4 Detailed design |
235 | 71.17.3.5 Standard panel configuration |
236 | 71.17.3.6 Insulation 71.17.3.7 Fittings 71.17.3.8 Mass breakdown |
237 | 71.17.3.9 Verification by analysis |
238 | 71.17.3.10 Panel manufacture 71.17.3.11 Panel testing |
241 | 71.17.3.12 Leading edge element 71.17.4 MIRKA – Micro re-entry capsule 71.17.4.1 General |
242 | 71.17.4.2 Design concept |
243 | 71.17.4.3 Test programme 71.17.4.4 Flight performance 71.17.4.5 Proposed applications 71.17.5 ALSCAP – Alternative low-cost, short-manufacturing-cycle ceramic assessment programme 71.17.5.1 General |
244 | 71.17.5.2 Materials and manufacturing 71.17.5.3 Characterisation and testing |
245 | 71.17.5.4 Programme conclusions |
246 | 71.18 Aeroshell 71.18.1 General 71.18.2 Semi-integrated aeroshell TPS (S.I.A.T) 71.18.3 Demonstrator aeroshell design 71.18.3.1 General |
247 | 71.18.3.2 General architecture |
248 | 71.18.3.3 Thermal |
250 | 71.18.3.4 Critical load cases 71.18.3.5 Material samples test campaigns |
251 | 71.18.3.6 Manufacture 71.18.3.7 Testing |
252 | 71.18.3.8 Conclusions 71.19 Cryogenic tanks 71.19.1 General |
253 | 71.19.2 European programmes 71.19.2.1 FESTIP 71.19.2.2 C-SiC oxidation protection 71.19.2.3 IMI internal multiscreen insulation |
254 | 71.19.2.4 Refractory metals and aluminide oxidation protection 71.19.2.5 ODS alloys 71.19.3 Concepts: TPS panel array 71.19.4 Concepts: LH tank cryogenic insulation |
256 | 71.20 TPS mass budgets 71.20.1 Allocation |
257 | 71.20.2 Examples 71.21 TPS verification 71.22 Polymer foam cryogenic insulation 71.22.1 General 71.22.1.1 Expendable ‘single-shot’ launchers 71.22.1.2 Reusable launchers 71.22.2 Polymer foam characteristics |
258 | 71.22.3 Properties 71.22.3.1 Mechanical 71.22.3.2 Physical |
259 | 71.22.4 Materials 71.22.4.1 Material selection |
260 | 71.22.4.2 Evaluation 71.22.4.3 Foam structure 71.22.4.4 Foam mechanical properties |
261 | 71.22.5 Ranking of polymer foam cryogenic insulation 71.22.5.1 Criteria |
262 | 71.22.5.2 Summary |
263 | 71.22.6 Further work 71.23 High temperature insulation (HTI) 71.23.1 Background |
264 | 71.23.2 Development factors 71.23.2.1 Objectives 71.23.2.2 Technology-related 71.23.2.3 Technical-related |
265 | 71.23.2.4 Configuration-related 71.23.3 Development apoproach 71.23.3.1 Test philosophy and plan |
268 | 71.23.4 Materials 71.23.5 Testing 71.23.5.1 General 71.23.5.2 Thermal stability |
269 | 71.23.5.3 Material selection based on thermal stability |
270 | 71.23.5.4 Temperature gradient test |
272 | 71.23.6 Summary 71.24 References 71.24.1.1 General |
282 | 72 SPF/DB titanium designs 72.1 Introduction 72.1.1 General 72.1.2 Aircraft components 72.1.3 Space applications |
283 | 72.2 Basic SPF/DB process 72.2.1 Superplastic forming 72.2.2 Diffusion bonding |
285 | 72.3 Process attributes |
286 | 72.4 Titanium alloys |
287 | 72.5 Aluminium alloys |
288 | 72.6 Access doors and ducting 72.6.1 General 72.6.2 Slat track/jack cans |
289 | 72.6.3 Underwing access doors |
290 | 72.6.4 Other SPF/DB components 72.7 Spars and stiffened panels |
291 | 72.8 Struts and cylinders 72.9 Leading edges and lateral fins |
292 | 72.10 Firewalls 72.11 Pressure vessels |
293 | 72.12 Cost aspects 72.13 European facilities 72.14 References 72.14.1 General |
295 | 73 Propulsion technologies 73.1 Introduction 73.2 Propulsion unit requirements 73.2.1 Launcher engines 73.2.1.1 Ariane 5 single mission launcher 73.2.2 Shuttle engines 73.2.3 Spaceplane engines |
296 | 73.2.4 Thrusters 73.2.5 Nozzles 73.3 Fuels 73.3.1 General 73.3.2 Solid propellants 73.3.3 LH/LOX |
297 | 73.3.4 Monopropellants 73.3.5 Bipropellants 73.4 Ariane 5 73.4.1 General 73.4.2 MPS solid rocket motor 73.4.2.1 General |
298 | 73.4.2.2 MPS specification 73.5 Vulcain engine 73.5.1 General |
299 | 73.5.2 Specification 73.5.3 Materials |
300 | 73.6 HM 7 engine 73.6.1 General |
301 | 73.6.2 Nozzle geometry 73.7 Mage 2 motor 73.8 Nozzles |
302 | 73.9 Space Shuttle Main Engine (SSME) 73.10 Air breathing engines 73.10.1 General |
303 | 73.10.2 NASP nozzle development 73.10.3 European ramjet technology 73.11 CMC rocket stator |
305 | 73.12 Metal thrusters 73.13 CMC thrusters 73.14 References 73.14.1 General |
308 | 74 Protective coatings 74.1 Introduction |
309 | 74.2 Coating functions 74.2.1 General |
310 | 74.2.2 Application requirements 74.2.2.1 Spaceplane aerodynamic re-entry surfaces 74.2.2.2 Propulsion systems 74.3 Passivation 74.3.1 General |
311 | 74.3.2 Materials 74.3.3 Coating adhesion |
312 | 74.4 Basic coating types 74.4.1 General 74.4.2 Diffusion coatings 74.4.3 Overlay coatings 74.4.3.1 General 74.4.3.2 MCrAlY type 74.4.3.3 Thermal barrier coatings (TBC) |
313 | 74.5 Coating processes 74.5.1 General 74.5.2 Slurry coating 74.5.2.1 General´ 74.5.2.2 Applications 74.5.3 Physical vapour deposition (PVD) 74.5.3.1 General |
314 | 74.5.3.2 Applications 74.5.4 Enhanced physical vapour deposition (PVD) 74.5.5 Thermal spraying 74.5.5.1 General 74.5.5.2 Applications 74.5.6 Chemical vapour deposition (CVD) 74.5.6.1 General |
315 | 74.5.6.2 Applications 74.5.7 Enhanced chemical vapour deposition (CVD) 74.5.8 Other processes |
316 | 74.6 Coatings: Titanium components 74.6.1 NASP 74.6.1.1 General 74.6.1.2 Reactive slurry coatings 74.6.1.3 Multi-layer glass coatings 74.7 Coatings: Superalloy components 74.7.1 General |
317 | 74.7.2 Aluminide diffusion coatings 74.7.3 MCrAlY overlay coatings 74.7.3.1 General 74.7.3.2 Oxidation resistance |
318 | 74.7.3.3 Hot corrosion 74.8 Thermal barrier coatings (TBC) 74.8.1 Ni-based superalloy components 74.8.1.1 General 74.8.1.2 Coating formulation 74.8.1.3 Coating application 74.8.2 Shuttle Main Engine HPFTP blades |
319 | 74.8.3 Fibre-reinforced TBC’s 74.8.4 Coating technology 74.8.5 Seals 74.9 Carbon-Carbon: Oxidation protection 74.9.1 General 74.9.2 Applications 74.9.3 Coating systems |
320 | 74.9.4 Basic problem 74.10 Multiplex coatings 74.10.1 General |
321 | 74.10.2 Constituents 74.10.2.1 Inhibited C-C substrate 74.10.2.2 Surface treatment 74.10.2.3 Primary oxidation barrier |
322 | 74.10.2.4 Outer glaze 74.10.3 Application examples 74.10.3.1 Buran and Space Shuttle 74.10.3.2 Hermes |
323 | 74.10.3.3 NASP 74.11 Coatings: C-SiC and SiC-SiC 74.11.1 General 74.11.2 C-SiC 74.11.3 SiC-SiC |
324 | 74.12 Carbon-Carbon: Surface coatings 74.12.1 Dimensionally stable structures 74.12.1.1 General |
325 | 74.12.1.2 Types of coatings |
326 | 74.12.1.3 Reflective coating deposition methods |
327 | 74.12.1.4 Reflective coating quality 74.12.1.5 Coated DSS manufacturing methods |
328 | 74.13 References 74.13.1 General |
332 | 75 Seal technology 75.1 Introduction 75.1.1 Uses 75.1.2 Structural assemblies |
333 | 75.1.3 Dynamic seals 75.1.4 Materials 75.2 Structural seals |
334 | 75.3 Seal materials 75.3.1 General 75.3.2 Elastomers 75.3.2.1 Essential characteristics |
335 | 75.3.2.2 Crosslinking 75.3.2.3 Temperature effects and glass transition |
337 | 75.3.3 Types of elastomers 75.3.3.1 Formulation 75.3.3.2 Base elastomer-types and characteristics |
338 | 75.3.3.3 Tensile |
339 | 75.3.3.4 Fluid resistance: Liquids |
340 | 75.3.3.5 Fluid resistance: Gases 75.3.3.6 Thermal cycling |
341 | 75.3.3.7 Radiation 75.3.3.8 Vacuum 75.3.4 Visoelasticity |
342 | 75.3.5 Physical properties 75.3.5.1 General |
343 | 75.3.5.2 Hardness and elastic modulus 75.3.5.3 Tensile strength and elongation at break |
344 | 75.3.5.4 Tear strength 75.3.5.5 Resilience and dynamic properties |
346 | 75.3.5.6 Compression set 75.3.5.7 Physical creep and stress relaxation |
349 | 75.3.6 Chemical properties 75.3.6.1 Heat resistance |
350 | 75.3.6.2 Low temperature resistance |
351 | 75.3.6.3 Chemical resistance |
352 | 75.3.7 Rubber-to-metal bonding |
353 | 75.3.8 Engineering design with elastomers 75.3.8.1 Fundemental aspects 75.3.8.2 Shear stiffness of simple blocks 75.3.8.3 Compression stiffness of simple blocks |
355 | 75.3.8.4 Compression stiffness of laminated blocks 75.3.8.5 Torsion stiffness |
356 | 75.3.9 Finite element analysis |
358 | 75.3.10 Applications 75.3.10.1 General 75.3.10.2 Vibration isolation 75.3.10.3 Seals |
359 | 75.3.11 Thermoplastic elastomers 75.4 Energised metal seals 75.4.1 General |
360 | 75.4.2 Materials |
361 | 75.5 NASP engine developments 75.5.1 General 75.5.2 Developments 75.5.2.1 Ceramic Wafer Seal |
362 | 75.5.2.2 Braided Ceramic Rope Seal 75.5.2.3 ‘V’-ring and ‘U’-ring Seals 75.6 Fibrous seals |
363 | 75.7 Elastomeric seals 75.7.1 Materials 75.7.1.1 General 75.7.1.2 Aerospace 75.7.2 Design aspects |
364 | 75.7.3 Causes of leakage 75.7.3.1 Static seals 75.7.3.2 Pressure-energised seals 75.7.3.3 Effect of temperature 75.7.3.4 Effect of pressure |
365 | 75.7.3.5 Changes in fluids 75.7.3.6 Explosive decompression 75.7.3.7 Testing aspects 75.7.4 Aerospace applications |
366 | 75.8 References 75.8.1 General |
367 | 75.8.2 ECSS standards |
368 | 75.8.3 ASTM standards 75.8.4 ISO standards |
369 | 76 Integrity control of high temperature structures 76.1 Introduction 76.2 Materials 76.2.1 Integrity control |
370 | 76.2.2 Fracture control 76.3 Failure characteristics 76.3.1 Advanced alloy systems 76.3.2 Composite materials 76.3.2.1 General 76.3.2.2 Metal matrix 76.3.2.3 Glass and ceramic matrix 76.3.2.4 Fibre-to-matrix interface |
371 | 76.4 High temperature 76.5 Coatings 76.5.1 General 76.5.2 Manufacturing 76.5.3 Inspection |
372 | 76.6 Considerations 76.6.1 Mass optimisation 76.6.2 Approach 76.6.2.1 General 76.6.2.2 New materials |
373 | 76.7 Case study: Developments in integrity control |
375 | 76.8 Case study: Phase 1 – Material characterisation 76.8.1 General 76.8.2 Materials, manufacturing and NDT 76.8.2.1 General 76.8.2.2 Carbon-Carbon 76.8.2.3 C-SiC and SiC-SiC 76.8.2.4 Introduced defects |
376 | 76.8.3 Defect detection by selected NDI methods 76.8.3.1 General 76.8.3.2 Green part 76.8.3.3 Final pyrolysed high temperature composite 76.8.3.4 Protective coatings |
377 | 76.8.3.5 Unsuccessful techniques 76.8.4 Maximum applied stresses |
378 | 76.8.5 High-temperature tests 76.8.5.1 Test regime 76.8.5.2 Four point bending tests |
379 | 76.8.6 Residual strengths 76.8.6.1 SiC-SiC 76.8.6.2 C-SiC 76.8.6.3 C-C 76.8.7 Analysis 76.8.8 Conclusions |
380 | 76.9 Case study: Phase 2 – Structural sub-component behaviour 76.10 References 76.10.1 General |
381 | 77 Defect types 77.1 Introduction |
382 | 77.2 Advanced metal alloys 77.2.1 General 77.2.2 ODS alloys 77.2.3 SPF alloys 77.3 Metal matrix composites 77.3.1 General 77.3.2 Standard product forms |
383 | 77.3.3 Near-net shape manufacture |
384 | 77.4 Ceramic matrix composites 77.5 Coatings |
385 | 77.6 Joints 77.6.1 General 77.6.2 Uses |
386 | 77.6.3 Mechanical fastened joints 77.6.4 Fusion joints |
387 | 77.7 Structural parts 77.7.1 General 77.7.2 Composite materials 77.7.2.1 Shaping and machining 77.7.2.2 Near-net shape manufacture 77.8 In service |
389 | 77.9 References 77.9.1 General |
390 | 78 Damage tolerance 78.1 Introduction 78.1.1 Materials 78.1.2 Structure 78.1.3 Fracture mechanics 78.1.4 Initial material quality (IMQ) |
391 | 78.2 MMC: Particulate and whisker reinforced 78.2.1 Fatigue behaviour 78.2.1.1 General |
392 | 78.2.1.2 Particulate size 78.2.2 Fracture mechanics |
393 | 78.3 CMC: Whisker reinforced 78.4 MMC: Continuous fibre reinforced 78.4.1 Fatigue 78.4.1.1 General |
394 | 78.4.1.2 Single crack failures 78.4.1.3 Matrix failure |
395 | 78.5 CMC: Continuous fibre reinforced 78.5.1 Failure characteristics 78.5.1.1 General 78.5.1.2 Fibre to matrix interface |
396 | 78.5.1.3 Fracture characterisation 78.6 Coatings 78.6.1 Coating performance |
397 | 78.6.2 Process and material selection 78.6.2.1 General 78.6.2.2 Microstructure 78.6.3 Failure characteristics |
398 | 78.7 References 78.7.1 General 78.7.2 ECSS standards |
399 | 79 Fracture control 79.1 Introduction 79.1.1 Application 79.1.1.1 Alloys 79.1.1.2 Brittle materials 79.2 References 79.2.1 General 79.2.2 ECSS standards |
400 | 80 NDT techniques 80.1 Introduction |
401 | 80.2 Advanced metal alloys 80.2.1 General 80.2.2 Brittle materials 80.2.3 Multi-phase microstructures 80.3 Metal matrix composites |
402 | 80.4 Carbon-Carbon and ceramic matrix composites |
405 | 80.5 Coatings 80.6 Joints 80.6.1 General 80.6.2 Fused joints |
406 | 80.6.3 Mechanically fastened and interlock joints 80.6.3.1 TPS structures 80.6.3.2 Thrusters and nozzles 80.7 Fusion joints 80.7.1 General 80.7.2 Thin-walled seam welded tubes |
407 | 80.7.3 Diffusion bonded joints 80.8 References 80.8.1 General |
410 | 81 High-temperature testing 81.1 Introduction 81.2 Purpose of testing |
411 | 81.3 Material behaviour 81.3.1 Basic fracture modes 81.3.2 Metal matrix composites 81.3.2.1 Particulate reinforced (MMCp) 81.3.2.2 Fibre reinforced (MMCf) 81.3.3 Inorganic and ceramic matrix composites 81.3.3.1 Fibre reinforced (ICMCf) |
412 | 81.4 Degradation mechanisms 81.4.1 Materials 81.4.1.1 Metal compositions 81.4.1.2 Ceramic compositions 81.4.2 Degradation rate |
413 | 81.5 Coupon testing 81.5.1 General 81.5.2 Single-fibre tests 81.5.3 Fibre push through 81.5.4 Net-shape components 81.5.5 Flexural and ILSS testing |
414 | 81.5.6 Small coupon tests 81.5.7 Machining 81.5.8 Extensometry |
415 | 81.5.9 End tabs 81.5.10 Coatings 81.5.11 Material gradation 81.5.12 Specimen alignment 81.5.13 Linear elasticity 81.6 Mechanical properties 81.6.1 General |
416 | 81.6.2 Tensile 81.6.2.1 General 81.6.2.2 Particulate reinforced composite 81.6.2.3 Continuous fibre-reinforced composites |
417 | 81.6.3 Compression 81.6.3.1 Continuous fibre-reinforced composites |
418 | 81.6.4 Shear 81.6.5 Open-hole tension 81.6.6 Fatigue 81.7 Fracture toughness |
419 | 81.8 Physical properties 81.8.1 General 81.8.2 Standards 81.9 Status of test standards 81.9.1 General |
420 | 81.9.2 Metal matrix composites 81.9.3 Ceramic matrix composites 81.9.3.1 CEN TC 184 activities |
421 | 81.9.3.2 Continuous fibre reinforced ceramic composites 81.9.3.3 Short fibre reinforced ceramic composites 81.9.3.4 Ceramic coatings 81.9.3.5 Other properties |
424 | 81.10 Demonstrator testing |
425 | 81.11 References 81.11.1 General |