IEEE 1293 2018:2019 Edition
$105.08
IEEE Standard Specification Format Guide and Test Procedure for Linear Single-Axis, Nongyroscopic Accelerometers
Published By | Publication Date | Number of Pages |
IEEE | 2019 | 271 |
Revision Standard – Active. The specification and test requirements for a linear, single-axis, nongyroscopic accelerometer for use in inertial navigation, guidance, and leveling systems are defined. A standard specification guide and a compilation of recommended test procedures for such accelerometers are provided. Informative annexes are given on the various types of such accelerometers (force or pendulous torque rebalance with analog or digital output, vibrating beam, and micromechanical) and error effects, on filtering, noise, and transient analysis techniques, and on calibration and modeling techniques (multipoint tumble analysis, vibration and shock test analyses, and geophysical effects in inertial instrument testing).
PDF Catalog
PDF Pages | PDF Title |
---|---|
1 | IEEE Std 1293-2018 Front Cover |
2 | Title Page |
3 | Abstract/Keywords |
4 | Important Notices and Disclaimers Concerning IEEE Standards Documents |
7 | Participants |
9 | Introduction |
11 | Contents |
15 | 1. Overview 1.1 Scope 1.2 Purpose 1.3 Document structure |
16 | 2. Normative references Part I—Specification format 3. Overview 3.1 Scope |
17 | 3.2 Purpose 4. Applicable documents |
18 | 4.1 Specifications 4.1.1 Government 4.1.2 Industry/technical 4.1.3 Company 4.2 Standards 4.2.1 Government 4.2.2 Industry/technical 4.2.3 Company 4.3 Drawings 4.3.1 Government 4.3.2 Industry/technical 4.3.3 Company 4.4 Bulletins 4.4.1 Government 4.4.2 Industry/technical 4.4.3 Company 4.5 Other publications 5. Requirements 5.1 Description |
21 | 5.2 General requirements 5.2.1 Precedence 5.2.2 Deliverables |
22 | 5.2.3 Other 5.3 Performance 5.3.1 General 5.3.2 Input range |
23 | 5.3.3 Overload capacity 5.3.4 Accelerometer temperature 5.3.4.1 Operating temperature 5.3.4.2 Temperature sensor 5.3.5 Scale factor 5.3.5.1 Absolute value |
24 | 5.3.5.2 Asymmetry 5.3.5.3 Short-term stability 5.3.5.4 Long-term stability |
25 | 5.3.5.5 Repeatability 5.3.5.6 Sensitivity 5.3.6 Nonlinearity |
26 | 5.3.7 Bias 5.3.7.1 Absolute value 5.3.7.2 Asymmetry 5.3.7.3 Short-term stability 5.3.7.4 Long-term stability |
27 | 5.3.7.5 Repeatability 5.3.7.6 Sensitivity 5.3.8 IA misalignment 5.3.8.1 About pendulous axis (PA) 5.3.8.2 About output axis (OA) |
28 | 5.3.8.3 Short-term stability 5.3.8.4 Long-term stability 5.3.8.5 Repeatability 5.3.8.6 Sensitivity |
29 | 5.3.9 Temperature model and temperature hysteresis 5.3.9.1 Temperature-controlled operation 5.3.9.2 Non–temperature-controlled operation |
30 | 5.3.10 Cross-axis nonlinearity 5.3.11 Cross coupling 5.3.12 Warm-up time 5.3.13 Acceleration threshold 5.3.14 Acceleration resolution |
31 | 5.3.15 Acceleration dead band 5.3.15.1 Force-rebalance dead band 5.3.15.2 Vibrating beam accelerometer (VBA) frequency lock 5.3.15.3 VBA activity dips 5.3.16 Repeatability across shut-down or nonoperational environment 5.3.17 Turn-on hysteresis 5.3.18 Inversion transient |
32 | 5.3.19 Velocity storage 5.3.19.1 Normal operation 5.3.19.2 Over-range operation 5.3.19.3 Across power interrupt 5.3.20 Noise |
33 | 5.3.21 Frequency response 5.3.22 Vibration-induced errors 5.3.23 Self-test scale factor 5.3.24 Pickoff characteristics 5.3.24.1 Pickoff excitation |
34 | 5.3.24.2 Scale factor 5.3.24.3 Phase/polarity 5.3.24.4 Electrical null 5.3.24.5 Output limits 5.3.24.6 Output impedance 5.3.24.7 Frequency response |
35 | 5.3.25 Reference constants 5.3.26 Torquer polarity 5.3.27 Sensor transfer function |
36 | 5.3.28 Proof-mass elastic restraint 5.3.29 [Analog, Pulse-rebalance] capture-loop electronics 5.3.29.1 Capture-loop input characteristics 5.3.29.2 Capture-loop frequency response |
37 | 5.3.29.3 Capture-loop output characteristics |
39 | 5.3.29.4 Command input(s) 5.3.29.5 Clock reference 5.4 Mechanical requirements 5.4.1 Exterior surfaces 5.4.2 Dimensions |
40 | 5.4.3 Identification of product 5.4.4 Sensor axes |
42 | 5.4.5 Weight or mass |
43 | 5.4.6 Seal 5.5 Electrical and magnetic requirements 5.5.1 Electrical interface 5.5.1.1 Torquer or forcer characteristics 5.5.1.2 Pickoff characteristics |
44 | 5.5.1.3 Heater characteristics 5.5.1.4 Temperature sensor characteristics 5.5.1.5 Self-test torquer or forcer characteristics |
46 | 5.5.2 Electromagnetic interference/compatibility 5.5.3 Insulation resistance 5.5.4 Dielectric strength 5.5.5 Magnetic leakage |
47 | 5.6 Environmental requirements 5.6.1 Nonoperating environment 5.6.1.1 Temperature 5.6.1.2 Thermal shock 5.6.1.3 Vibration 5.6.1.4 Mechanical shock 5.6.1.5 Pressure 5.6.1.6 Humidity 5.6.1.7 Magnetic induction |
48 | 5.6.1.8 Nuclear radiation 5.6.1.9 Other nonoperating environments 5.6.1.10 Storage life 5.6.2 Operating environment 5.6.2.1 Temperature (high and low) 5.6.2.2 Thermal shock 5.6.2.3 Other thermal conditions |
49 | 5.6.2.4 Vibration 5.6.2.5 Mechanical shock 5.6.2.6 Acceleration 5.6.2.7 Pressure 5.6.2.8 Humidity 5.6.2.9 Acoustic noise 5.6.2.10 Magnetic induction 5.6.2.11 Nuclear radiation 5.6.2.12 Other operating environments |
50 | 5.6.2.13 Operating life 5.6.3 Dormancy environment 5.7 Reliability 5.7.1 Reliability program 5.7.2 Mean time between failure (MTBF) 6. Quality assurance |
51 | 6.1 Classification of tests |
53 | 6.2 Acceptance tests |
54 | 6.2.1 Individual tests 6.2.2 Sampling plan and tests 6.2.2.1 Sampling plan 6.2.2.2 Sampling tests |
55 | 6.2.3 Rejection and retest 6.2.4 Defects in accepted items 6.3 Qualification tests 6.3.1 Qualification test samples 6.3.2 List of qualification tests 6.4 Reliability tests |
56 | 6.5 Test conditions and equipment 6.6 Test methods 6.6.1 Test setup 6.6.1.1 Nonoperating test setup 6.6.1.2 Operating test setup 6.6.2 Accelerometer nonoperating tests 6.6.2.1 Examination of product 6.6.2.2 Weight or mass 6.6.2.3 Impedance 6.6.2.4 Dielectric strength 6.6.2.5 Insulation resistance 6.6.2.6 Seal 6.6.2.7 Temperature sensor characteristics 6.6.3 Accelerometer operating tests 6.6.3.1 Functional checkout 6.6.3.2 Noise 6.6.3.3 Inversion transient 6.6.3.4 Four-point tumble |
57 | 6.6.3.5 Static multipoint 6.6.3.6 Threshold, resolution, and dead band 6.6.3.7 Warm-up time 6.6.3.8 Short-term stability 6.6.3.9 Long-term stability 6.6.3.10 Repeatability 6.6.3.11 Sensitivity 6.6.3.12 Temperature model calibration and temperature hysteresis 6.6.3.13 Velocity storage across power interrupt 6.6.3.14 Centrifuge input range and overload capacity 6.6.3.15 Precision centrifuge 6.6.3.16 Frequency response 6.6.3.17 Vibration calibration (nonlinear terms) 6.6.3.18 Vibration and shock calibration (scale factor and bias) 6.6.3.19 Performance through and across environment 6.6.3.20 Velocity storage in normal and over-range shock 6.6.3.21 Slew calibration 6.6.3.22 Magnetic leakage 6.6.4 Electromagnetically torqued pendulous accelerometer tests 6.6.4.1 Pickoff characteristics 6.6.4.2 Torquer and self-test torquer polarity 6.6.4.3 Open-loop frequency response 6.6.4.4 Pickoff scale factor and pendulum elastic restraint 6.6.4.5 Turn-on hysteresis 6.6.4.6 Self-test torquer scale factor 6.6.4.7 Velocity storage—Open-loop test 6.6.4.8 Velocity storage—Pulse-torque steady-state operation 6.6.5 VBA tests |
58 | 6.6.5.1 VBA frequency lock 6.6.5.2 VBA activity dips 6.6.6 Micromechanical accelerometer tests 6.6.6.1 Wafer level tests 6.6.6.2 Proof-mass suspension resonant frequency 6.6.6.3 Proof-mass freedom 6.6.6.4 Pickoff and torquer electrode capacitor values 6.6.6.5 Pickoff scale factor 6.6.6.6 Flexure elastic restraint 6.6.7 Life tests 6.6.7.1 Life—Storage or dormant 6.6.7.2 Life—Operating 6.6.8 Reliability tests 6.6.8.1 Laboratory reliability test 6.6.8.2 Field reliability experience 6.6.9 Environmental tests 6.6.9.1 Vibration 6.6.9.2 Mechanical shock 6.6.9.3 Acceleration 6.6.9.4 Angular acceleration and spin 6.6.9.5 Temperature (high, low) 6.6.9.6 Thermal shock 6.6.9.7 Thermal radiation 6.6.9.8 Pressure (high, low) 6.6.9.9 Acoustic noise 6.6.9.10 Electromagnetic interference 6.6.9.11 Electromagnetic susceptibility 6.6.9.12 Magnetic induction |
59 | 6.6.9.13 Fungus 6.6.9.14 Humidity 6.6.9.15 Salt spray 6.6.9.16 Sand and dust 6.6.9.17 Nuclear radiation 6.7 Data submittal 7. Preparation for delivery 8. Notes 8.1 Intended use 8.2 Ordering data 8.3 Model equation |
64 | Part II—Test procedure 9. Test procedure overview 10. Description 11. Test conditions and equipment 11.1 Standard test conditions 11.1.1 Ambient environment 11.1.1.1 Atmospheric conditions 11.1.1.2 Magnetic induction 11.1.1.3 Vibration 11.1.1.4 Other conditions |
65 | 11.1.2 Installation requirements 11.1.2.1 Mechanical conditions 11.1.2.2 Operating temperature |
66 | 11.1.2.3 Electrical interconnections 11.2 Test equipment 11.2.1 General requirements |
67 | 11.2.2 Description of test equipment 11.2.2.1 General equipment 11.2.2.2 Accelerometer-specific equipment |
68 | 11.2.2.3 Dividing head and mounting fixture 11.2.2.4 Vibration and shock equipment 11.2.2.5 Centrifuge |
69 | 11.2.2.6 Environmental chambers 12. Test procedure 12.1 Test setup 12.1.1 Nonoperating test setup 12.1.2 Operating test setup 12.1.2.1 Interconnections 12.1.2.2 OA rotation mounting position |
70 | 12.1.2.3 PA rotation mounting position 12.2 Accelerometer nonoperating tests 12.2.1 Examination of product 12.2.2 Weight or mass 12.2.3 Impedance |
71 | 12.2.3.1 Purpose 12.2.3.2 Test equipment 12.2.3.3 Test setup 12.2.3.4 Test procedure 12.2.3.5 Test results |
72 | 12.2.4 Dielectric strength 12.2.4.1 Purpose 12.2.4.2 Test equipment 12.2.4.3 Test setup 12.2.4.4 Test procedure 12.2.4.5 Test results 12.2.5 Insulation resistance 12.2.5.1 Purpose 12.2.5.2 Test equipment 12.2.5.3 Test setup |
73 | 12.2.5.4 Test procedure 12.2.5.5 Test results 12.2.6 Seal 12.2.6.1 Purpose 12.2.6.2 Test equipment 12.2.6.3 Test setup 12.2.6.4 Test procedure |
74 | 12.2.6.5 Test results 12.2.7 Temperature sensor characteristics 12.2.7.1 Purpose 12.2.7.2 Test equipment 12.2.7.3 Test setup 12.2.7.4 Test procedure |
75 | 12.2.7.5 Test results 12.3 Accelerometer operating tests |
76 | 12.3.1 Functional checkout 12.3.1.1 Purpose 12.3.1.2 Test equipment 12.3.1.3 Test setup 12.3.1.4 Test procedure 12.3.1.5 Test results 12.3.2 Noise 12.3.2.1 Purpose |
77 | 12.3.2.2 Test equipment 12.3.2.3 Test setup 12.3.2.4 Test procedure |
78 | 12.3.2.5 Test results 12.3.3 Inversion transient 12.3.3.1 Purpose |
79 | 12.3.3.2 Test equipment 12.3.3.3 Test setup 12.3.3.4 Test procedure 12.3.3.5 Test results 12.3.4 Four-point tumble |
80 | 12.3.4.1 Purpose 12.3.4.2 Test equipment 12.3.4.3 Test setup 12.3.4.4 Test procedure |
81 | 12.3.4.5 Test results 12.3.5 Static multipoint 12.3.5.1 Purpose 12.3.5.2 Test equipment |
82 | 12.3.5.3 Test setup mounting position 1 12.3.5.4 Test procedure mounting position 1 12.3.5.5 Test setup mounting position 2 12.3.5.6 Test procedure mounting position 2 12.3.5.7 Test results |
84 | 12.3.6 Threshold, resolution, and dead band 12.3.6.1 Purpose 12.3.6.2 Test equipment 12.3.6.3 Test setup 12.3.6.4 Test procedures |
85 | 12.3.6.5 Test results 12.3.7 Warm-up time 12.3.7.1 Purpose |
86 | 12.3.7.2 Test equipment 12.3.7.3 Test setup 12.3.7.4 Test procedure 12.3.7.5 Test results 12.3.8 Short-term stability 12.3.8.1 Purpose 12.3.8.2 Test equipment 12.3.8.3 Test setup |
87 | 12.3.8.4 Test procedure 12.3.8.5 Test results 12.3.9 Long-term stability 12.3.9.1 Purpose 12.3.9.2 Test equipment 12.3.9.3 Test setup 12.3.9.4 Test procedure |
88 | 12.3.9.5 Test results 12.3.10 Repeatability 12.3.10.1 Purpose 12.3.10.2 Test equipment 12.3.10.3 Test setup 12.3.10.4 Test procedure 12.3.10.5 Test results |
89 | 12.3.11 Sensitivity 12.3.11.1 Purpose 12.3.11.2 Test equipment 12.3.11.3 Test setup 12.3.11.4 Test procedure |
90 | 12.3.11.5 Test results |
91 | 12.3.12 Temperature model calibration and temperature hysteresis 12.3.12.1 Purpose 12.3.12.2 Test equipment 12.3.12.3 Test setup 12.3.12.4 Test procedure 12.3.12.5 Test results |
92 | 12.3.13 Velocity storage across power interrupt 12.3.13.1 Purpose 12.3.13.2 Test equipment 12.3.13.3 Test setup |
93 | 12.3.13.4 Test procedure 12.3.13.5 Test results |
94 | 12.3.14 Centrifuge input range and overload capacity 12.3.14.1 Purpose 12.3.14.2 Test equipment 12.3.14.3 Test setup mounting position A 12.3.14.4 Test procedure mounting position A 12.3.14.5 Test setup mounting position B |
95 | 12.3.14.6 Test procedure mounting position B 12.3.14.7 Test results 12.3.15 Precision centrifuge 12.3.15.1 Purpose 12.3.15.2 Test equipment 12.3.15.3 Test setup mounting position A 12.3.15.4 Test procedure mounting position A |
96 | 12.3.15.5 Test setup mounting position B 12.3.15.6 Test procedure mounting position B 12.3.15.7 Test results 12.3.16 Frequency response 12.3.16.1 Purpose |
97 | 12.3.16.2 Test equipment 12.3.16.3 Test setup |
98 | 12.3.16.4 Test procedure 12.3.16.5 Test results 12.3.17 Vibration calibration (nonlinear terms) 12.3.17.1 Purpose 12.3.17.2 Test equipment |
99 | 12.3.17.3 Test setup 12.3.17.4 Test procedure |
100 | 12.3.17.5 Test results 12.3.18 Vibration and shock calibration (scale factor and bias) 12.3.18.1 Purpose 12.3.18.2 Test equipment 12.3.18.3 Test setup |
101 | 12.3.18.4 Test procedure 12.3.18.5 Test results 12.3.19 Performance through and across environment 12.3.19.1 Purpose |
102 | 12.3.19.2 Test equipment 12.3.19.3 Test setup 12.3.19.4 Test procedure 12.3.19.5 Test results 12.3.20 Velocity storage in normal and over-range shock 12.3.20.1 Purpose |
103 | 12.3.20.2 Test equipment 12.3.20.3 Test setup 12.3.20.4 Test procedure |
104 | 12.3.20.5 Test results 12.3.21 Slew calibration 12.3.21.1 Purpose 12.3.21.2 Test equipment 12.3.21.3 Test setup 12.3.21.4 Test procedure 12.3.21.5 Test results |
105 | 12.3.22 Magnetic leakage 12.3.22.1 Purpose 12.3.22.2 Test equipment 12.3.22.3 Test setup 12.3.22.4 Test procedure 12.3.22.5 Test results |
106 | 12.4 Electromagnetically torqued pendulous accelerometer tests 12.4.1 Pickoff characteristics 12.4.1.1 Purpose 12.4.1.2 Test equipment 12.4.1.3 Test setup 12.4.1.4 Test procedure |
107 | 12.4.1.5 Test results 12.4.2 Torquer and self-test torquer polarity 12.4.2.1 Purpose 12.4.2.2 Test equipment 12.4.2.3 Test setup 12.4.2.4 Test procedure |
108 | 12.4.2.5 Test results 12.4.3 Open-loop frequency response 12.4.3.1 Purpose 12.4.3.2 Test equipment |
109 | 12.4.3.3 Test setup 12.4.3.4 Test procedure 12.4.3.5 Test results 12.4.4 Pickoff scale factor and pendulum elastic restraint 12.4.4.1 Purpose 12.4.4.2 Test equipment 12.4.4.3 Test setup 12.4.4.4 Test procedure |
110 | 12.4.4.5 Test results 12.4.5 Turn-on hysteresis 12.4.5.1 Purpose |
111 | 12.4.5.2 Test equipment 12.4.5.3 Test setup 12.4.5.4 Test procedure 12.4.5.5 Test results |
112 | 12.4.6 Self-test torquer scale factor 12.4.6.1 Purpose 12.4.6.2 Test equipment 12.4.6.3 Test setup 12.4.6.4 Test procedure 12.4.6.5 Test results |
113 | 12.4.7 Velocity storage—Open-loop test 12.4.7.1 Purpose 12.4.7.2 Test equipment 12.4.7.3 Test setup 12.4.7.4 Test procedure |
115 | 12.4.7.5 Test results 12.4.8 Velocity storage-pulse-torqued steady-state operation 12.4.8.1 Purpose 12.4.8.2 Test equipment 12.4.8.3 Test setup 12.4.8.4 Test procedure 12.4.8.5 Test results |
116 | 12.5 VBA tests 12.5.1 VBA frequency lock 12.5.1.1 Purpose 12.5.1.2 Test equipment 12.5.1.3 Test setup 12.5.1.4 Test procedure 12.5.1.5 Test results |
117 | 12.5.2 VBA activity dips 12.5.2.1 Purpose 12.5.2.2 Test equipment 12.5.2.3 Test setup 12.5.2.4 Test procedure 12.5.2.5 Test results |
118 | 12.6 Micromechanical accelerometer tests 12.6.1 Wafer-level tests 12.6.2 Proof-mass suspension resonant frequency 12.6.2.1 Purpose 12.6.2.2 Test equipment 12.6.2.3 Test setup 12.6.2.4 Test procedure |
119 | 12.6.2.5 Test results 12.6.3 Proof-mass freedom 12.6.3.1 Purpose 12.6.3.2 Test equipment 12.6.3.3 Test setup 12.6.3.4 Test procedure |
120 | 12.6.3.5 Test results 12.6.4 Torquer and pickoff electrode capacitor values 12.6.4.1 Purpose 12.6.4.2 Test equipment 12.6.4.3 Test setup 12.6.4.4 Test procedure 12.6.4.5 Test results |
121 | 12.6.5 Pickoff scale factor 12.6.5.1 Purpose 12.6.5.2 Test equipment 12.6.5.3 Test setup 12.6.5.4 Test procedure 12.6.5.5 Test results |
122 | 12.6.6 Flexure elastic restraint 12.6.6.1 Purpose 12.6.6.2 Test equipment 12.6.6.3 Test setup 12.6.6.4 Test procedure 12.6.6.5 Test results 12.7 Life tests 12.7.1 Life—Storage or dormant 12.7.1.1 Purpose |
123 | 12.7.1.2 Test equipment 12.7.1.3 Test setup 12.7.1.4 Test procedure 12.7.1.5 Test results 12.7.2 Life—Operating 12.7.2.1 Purpose 12.7.2.2 Test equipment |
124 | 12.7.2.3 Test setup 12.7.2.4 Test procedure 12.7.2.5 Test results 12.8 Reliability tests 12.8.1 Laboratory reliability test 12.8.1.1 Purpose 12.8.1.2 Test equipment 12.8.1.3 Test setup 12.8.1.4 Test procedure |
125 | 12.8.1.5 Test results 12.8.2 Field reliability experience 12.9 Environmental tests 12.9.1 Purpose 12.9.2 Test equipment 12.9.3 Test setup |
126 | 12.9.4 Test procedure 12.9.5 Test results |
129 | Part III—Accelerometer descriptions Annex A (informative) Accelerometer dynamic block diagrams A.1 Introduction A.2 Open-loop operation |
130 | A.3 Closed-loop operation |
131 | A.4 Open-loop operation of closed-loop accelerometer A.5 Operation with voltage-to-frequency conversion |
132 | A.6 Operation with digital capture loop A.7 Accuracy of capture-loop readout |
133 | Annex B (informative) Digital accelerometers and comments concerning their test methods B.1 Introduction B.2 Description of commonly encountered digital output formats B.2.1 Sample and hold with an analog-to-digital converter B.2.2 Digitally captured accelerometers |
135 | B.2.3 Analog accelerometer with a voltage-to-frequency converter B.2.4 Biased outputs B.2.5 VBA B.3 Comments concerning test methods associated with digital instruments B.3.1 Aliasing B.3.2 One-count uncertainty and moding |
136 | B.3.3 Period measurement versus measurement of the number of pulses over a fixed time interval B.3.4 Measurement of positive and negative pulses provided on separate data lines B.3.5 Asymmetry B.3.6 Biased outputs |
137 | B.3.7 Threshold and resolution (see 12.3.6) |
138 | Annex C (informative) Characteristics of pendulous accelerometers C.1 Design principles C.2 Applications |
139 | C.3 Error sources C.3.1 Cross-coupling |
141 | C.3.2 Effective centers of mass |
144 | C.3.3 Anisoinertia C.4 Trade-offs |
145 | C.5 Environmental effects C.6 Testing C.7 Special requirements in the specification |
146 | C.8 Advantages and disadvantages |
147 | Annex D (informative) Overview of the characterization and use of the VBA D.1 Introduction D.2 Historical background D.2.1 Early frequency output devices D.2.2 Vibrating string accelerometer |
148 | D.3 VBA—Theory of operation D.3.1 Quartz resonator |
149 | D.3.2 Single tine resonator |
150 | D.3.3 Dual tines—Double-ended tuning fork (DETF) |
151 | D.3.4 Push–pull mechanization |
152 | D.3.5 Gas damping D.4 VBA signal processing D.4.1 Frequency counting |
153 | D.4.2 Period D.4.3 Phase processing |
154 | D.4.4 Dual resonators D.4.5 Algorithms |
156 | D.5 VBA error sources D.5.1 Scale factor stability D.5.2 Bias stability D.5.3 Effect of clock errors |
157 | D.5.4 Quantization noise D.5.5 Vibration rectification compensation |
158 | D.5.6 Aliasing D.5.7 Inversion transients D.5.8 Dual-pendulum effects D.5.9 Frequency lock and activity dips |
160 | D.6 Related developments D.6.1 Coriolis rate sensors D.6.2 Silicon micromachining technology |
161 | Annex E (informative) VBA resonator frequency as a function of applied acceleration E.1 Geometry and elastic properties of vibrating beam |
162 | E.2 Square-root relationship derived from energy considerations E.2.1 Internal energy of beam |
163 | E.2.2 Effect of axial force |
164 | E.2.3 Taylor series expansion for square root expression |
165 | E.3 Direct frequency versus force relation |
166 | E.3.1 Vibrating beam partial differential equation E.3.2 Reduction to ordinary differential equations |
167 | E.3.3 Solution by separation of variables |
168 | E.3.4 Application of the boundary conditions E.3.5 Frequency of beam under no axial load |
169 | E.3.6 Frequency of beam with axial load |
170 | E.4 Frequency versus force numerical evaluation E.4.1 Generation of curve |
172 | E.4.2 Least-squares fit E.5 Comparison of fit coefficients and square-root Taylor coefficients |
174 | Annex F (informative) Micromechanical accelerometers F.1 Micromachining F.2 Micromachined silicon accelerometer—flexured-mass configurations F.2.1 Design features of the piezoresistive flexured-mass accelerometer |
175 | F.2.2 Design features of the capacitive pickoff and forcer flexured-mass accelerometer |
178 | F.2.3 Circuit diagrams for capacitive sensing and forcing F.2.4 Open-loop operation |
180 | F.2.5 Closed-loop operation |
181 | F.2.6 Scale-factor, bias, and second-order nonlinearity |
182 | F.2.7 Performance considerations |
184 | F.3 Micromachined silicon VBAs F.3.1 Design features |
185 | F.3.2 Drive force and position sensing |
187 | F.3.3 Oscillator drive loop F.3.4 Error mechanisms |
189 | Annex G (informative) Outline of error sources in accelerometers G.1 Introduction G.2 Sensor characterization by mechanization |
190 | G.3 Typical sensor characterization by manufacturing process G.4 Error categories |
191 | G.5 Sensor physics |
193 | Part IV—Filtering, noise, and transient analyses Annex H (informative) Digital filtering H.1 Types of filtering and decimation |
194 | H.2 Rectangular filtering H.3 Triangular filtering |
195 | H.4 Higher order filtering |
196 | Annex I (informative) Noise characterization I.1 Stochastic processes I.2 Autocorrelation function of a stochastic process |
197 | I.3 Estimation of the autocorrelation function |
198 | I.4 Power spectral density (PSD) of a stationary stochastic process |
199 | I.5 Estimation of the PSD I.5.1 Continuous data |
200 | I.5.2 Interpretation of the PSD as a power spectrum |
201 | I.5.3 Discrete data |
203 | I.6 Numerical evaluation and plotting of the PSD |
204 | I.7 Characteristic PSD noise slopes I.7.1 Deterministic signals |
205 | I.7.2 White, random walk, and flicker noise I.7.3 Quantization noise |
206 | I.7.4 Typical log–log PSD plot |
207 | I.7.5 Noise specification |
208 | I.8 Characteristic Allan variance noise slopes |
209 | I.9 Estimation of Markov noise parameters I.9.1 Stochastic linear dynamic systems |
210 | I.9.2 Stochastic linear dynamic system noise models |
212 | I.9.3 Estimating parameters in stochastic linear dynamic systems |
214 | Annex J (informative) Characterization of transient behavior J.1 Types of transient behavior J.2 Second-order ordinary differential equation transient |
215 | J.3 Exponential, square root, and logarithmic transients |
217 | J.4 Estimation of transient parameters |
218 | Part V—Calibration and modeling techniques Annex K (informative) Calibrating accelerometer model coefficients from static multipoint tumble data K.1 Multipoint tumble test and analysis procedures K.1.1 Purpose of multipoint tumble testing K.1.2 Analysis procedures |
219 | K.1.3 Setup of dividing head and mounting fixture K.1.4 Test and data acquisition scenarios |
220 | K.1.5 Test orientations |
222 | K.2 Model equation for multipoint tumble analysis K.2.1 Choice of model coefficients K.2.2 Estimating model coefficients |
223 | K.2.3 Single accelerometer model equation |
224 | K.2.4 Fourier coefficients and parameter correlations |
225 | K.2.5 Model equation with dual orthogonal accelerometers |
227 | K.2.6 Magnitude-squared-of-g model equation |
228 | K.3 Multipoint tumble analysis with a single accelerometer observable K.3.1 Solving for bias, scale factor, and misalignment |
230 | K.3.2 Effect of asymmetries |
233 | K.3.3 Effect of quadratic and cubic acceleration sensitivities |
234 | K.3.4 Difficulty of estimating quadratic and cubic acceleration sensitivities in a single accelerometer multipoint tumble K.4 Multipoint tumble analysis with dual orthogonal accelerometer observables K.4.1 Simultaneous estimation of angle-setting and tilt errors, nonorthogonality, and accelerometer model coefficients |
235 | K.4.2 Covariance simulation |
236 | K.5 Multipoint tumble analysis with orthogonal accelerometer magnitude-squared-of-g observable K.5.1 Comparison with solving for angle-setting errors with individual accelerometer observables K.5.2 Covariance simulations |
237 | K.6 Least-squares maximum likelihood estimation K.6.1 Likelihood function and maximum likelihood estimates |
238 | K.6.2 Iterative determination of least-squares maximum likelihood estimates K.6.3 Postfit data residuals |
239 | K.6.4 Fisher information matrix |
240 | K.6.5 Cramer-Rao lower bound |
241 | K.6.6 Covariance of parameter estimates |
243 | Annex L (informative) Vibration test equipment, test procedures, and analysis techniques L.1 Test equipment and test fixtures L.1.1 Mounting fixture L.1.2 Electrodynamic vibrator L.1.3 Hydraulic vibrator |
244 | L.1.4 Vibrator orientation, slip tables, and attachment to floor |
245 | L.1.5 Measurement and control of vibration |
246 | L.2 Test scenarios L.2.1 Vibration tests |
247 | L.2.2 Shock tests L.3 Error sources |
248 | L.4 Test instrumentation and procedures L.4.1 Data acquisition |
249 | L.4.2 Test procedures L.5 General comments on analysis techniques |
250 | L.6 Calibration of nonlinear coefficients from vibration along different instrument axes L.6.1 Introduction L.6.2 Calibration with vertical and horizontal electrodynamic vibrations |
254 | L.6.3 High-precision calibration with horizontal hydraulic vibrations |
258 | L.6.4 Error sources |
260 | L.7 Summary |
261 | Annex M (informative) Geophysical effects in inertial instruments testing M.1 Introduction M.2 Seismic environment |
262 | M.3 Tilt and azimuth variations M.4 Effect of lunar–solar earth tides |
264 | M.5 Effect of ocean tides |
265 | M.6 Variations in earth rotation |
267 | Annex N (informative) Bibliography |
271 | Back Cover |