{"id":166923,"date":"2024-10-19T10:08:27","date_gmt":"2024-10-19T10:08:27","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-p-1050-1-2015\/"},"modified":"2024-10-25T02:27:09","modified_gmt":"2024-10-25T02:27:09","slug":"fema-p-1050-1-2015","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-p-1050-1-2015\/","title":{"rendered":"FEMA P 1050 1 2015"},"content":{"rendered":"

None<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\nFEMA P-1050-1: NEHRP Recommended Seismic Provisions for New Buildings and Other Structures – Volume I: Part 1 Provisions, Part 2 Commentary <\/td>\n<\/tr>\n
3<\/td>\nTitle Page <\/td>\n<\/tr>\n
4<\/td>\nDisclaimer <\/td>\n<\/tr>\n
5<\/td>\nForeword <\/td>\n<\/tr>\n
7<\/td>\nPreface and Acknowledgements <\/td>\n<\/tr>\n
9<\/td>\nTable of Contents <\/td>\n<\/tr>\n
33<\/td>\nIntroduction <\/td>\n<\/tr>\n
39<\/td>\nINTENT
1.1 Intent
1.1.1 Structure Collapse <\/td>\n<\/tr>\n
40<\/td>\n1.1.2 Nonstructural Damage <\/td>\n<\/tr>\n
41<\/td>\n1.1.3 Hazardous Materials
1.1.4 Preservation of Egress
1.1.5 Functionality of Critical or Essential Facilities
1.1.6 Repair Costs
1.1.7 Reference Document <\/td>\n<\/tr>\n
42<\/td>\n2.1 Commentary to Section
2.1.1 Structure Collapse <\/td>\n<\/tr>\n
44<\/td>\n2.1.2 Nonstructural Damage
2.1.3 Hazardous Materials
2.1.4 Preservation of Egress
2.1.5 Functionality of Critical or Essential Facilities <\/td>\n<\/tr>\n
45<\/td>\n2.1.6 Repair Costs <\/td>\n<\/tr>\n
47<\/td>\nPART 1, PROVISIONS <\/td>\n<\/tr>\n
49<\/td>\nChapter 1, General
Section 1.2.1
1.2.1 Definitions <\/td>\n<\/tr>\n
51<\/td>\nChapter 11, Seismic Design Criteria
Section 11.2
11.2 Definitions
Section 11.3
11.3 SYMBOLS <\/td>\n<\/tr>\n
52<\/td>\nSECTION 11.4.2
11.4.2 Site Class
Section 11.4.3
11.4.3 Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration Parameters <\/td>\n<\/tr>\n
53<\/td>\nSection 11.4.7
11.4.7 Site-Specific Ground Motion Procedures <\/td>\n<\/tr>\n
54<\/td>\nSection 11.5 and 11.6
11.5 IMPORTANCE FACTOR AND RISK CATEGORY
11.5.1 Importance Factor
11.5.2 Protected Access for Risk Category IV
11.6 SEISMIC DESIGN CATEGORY <\/td>\n<\/tr>\n
55<\/td>\nSection 11.8.3
11.8.3 Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F <\/td>\n<\/tr>\n
57<\/td>\nChapter 12, Seismic Design Requirements For Building Structures
SECTION 12.1.5
12.1.5 Foundation Design
SECTION 12.2
12.2 Structural System Selection
12.2.1 Selection and Limitations
12.2.1.1 Alternative Seismic Force-Resisting Systems <\/td>\n<\/tr>\n
58<\/td>\n12.2.1.2 Substitute Elements
SECTION 12.3.1.3
12.3.1.3 Calculated Flexible Diaphragm Condition <\/td>\n<\/tr>\n
59<\/td>\nFIGURE 12.3-1 Flexible Diaphragm
SECTION 12.4.2.2
12.4.2.2 Vertical Seismic Load Effect <\/td>\n<\/tr>\n
60<\/td>\nSECTION 12.8.1.3
12.8.1.3 Maximum SDS Value in Determination of Cs and Ev
SECTION 12.8.4.2
12.8.4.2 Accidental Torsion <\/td>\n<\/tr>\n
61<\/td>\nSection 12.9
SECTION 12.9.1.1
12.9.1.1 Number of Modes <\/td>\n<\/tr>\n
62<\/td>\nSECTION 12.9.1.4
12.9.1.4 Scaling Design Values of Combined Response.
12.9.1.4.1 Scaling of Forces
12.9.1.4.2 Scaling of Drifts
SECTION 12.9.1.8
12.9.1.8 Structural Modeling
SECTION 12.9.2
12.9.2 Linear Response History Analysis
12.9.2.1 General Requirements <\/td>\n<\/tr>\n
63<\/td>\n12.9.2.2 General Modeling Requirements
12.9.2.2.1 P-Delta Effects
12.9.2.2.2 Accidental Torsion
12.9.2.2.3 Foundation Modeling
12.9.2.2.4 Number of Modes to Include in Response History Analysis
12.9.2.2.5 Damping
12.9.2.3 Ground Motion Selection and Scaling
12.9.2.3.1 Procedure for Spectrum Matching
12.9.2.4 Application of Ground Acceleration Histories <\/td>\n<\/tr>\n
65<\/td>\n12.9.2.6 Enveloping of Force Response Quantities
12.9.2.7 Enveloping of Displacement Response Quantities
SECTION 12.10
12.10 Diaphragms, Chords, and Collectors
SECTION 12.10.1.1
12.10.1.1 Diaphragm Design Forces
SECTION 12.10.3 <\/td>\n<\/tr>\n
66<\/td>\n12.10.3 Alternative Provisions for Diaphragms Including Chords and Collectors
12.10.3.1 Design
12.10.3.2 Seismic Design Forces for Diaphragms including Chords and Collectors
12.10.3.2.1 Design acceleration coefficients Cp0 and Cpn <\/td>\n<\/tr>\n
67<\/td>\nFIGURE 12.10-2 Calculating the Design Acceleration Coefficient Cpx in Buildings with n \u2264 2 and in Buildings with n \u2265 3
12.10.3.3 Transfer Diaphragms
12.10.3.4 Collectors – Seismic Design Categories C through F <\/td>\n<\/tr>\n
68<\/td>\n12.10.3.5 Diaphragm Design Force Reduction Factor
SECTION 12.13
12.13 FOUNDATION DESIGN
12.13.1 Design Basis
12.13.2 Materials of Construction
12.13.3 Foundation Load-Deformation Characteristics
12.13.4 Reduction of Foundation Overturning <\/td>\n<\/tr>\n
69<\/td>\nSECTION 12.13.5
12.13.5 Strength Design for Nominal Foundation Geotechnical Capacity
12.13.5.1 Nominal Strength
12.13.5.2 Resistance Factors <\/td>\n<\/tr>\n
70<\/td>\n12.13.5.3 Acceptance Criteria
SECTION 12.13.5 and 12.13.6
12.13.6 5 Requirements for Structures Assigned to Seismic Design Category C
12.13.7 6 Requirements for Structures Assigned to Seismic Design Category D through F
SECTION 12.13.8
12.13.8 Requirements for Structure Foundations on Liquefiable Sites
12.13.8.1 Foundation Design
12.13.8.2 Shallow Foundations <\/td>\n<\/tr>\n
71<\/td>\n12.13.8.2.1 Shallow Foundation Detailing
12.13.8.2.1.1 Foundation Ties <\/td>\n<\/tr>\n
72<\/td>\n12.13.8.2.1.2 Mat Foundations
12.13.8.3 Deep Foundations
12.13.8.3.1 Downdrag
12.13.8.3.2 Lateral Resistance
12.13.8.3.3 Concrete Deep Foundation Detailing <\/td>\n<\/tr>\n
73<\/td>\n12.13.8.3.4 Lateral Spreading
12.13.8.3.5 Foundation Ties
SECTION 12.14.1.1
12.14.1.1 Simplified Design Procedure <\/td>\n<\/tr>\n
75<\/td>\nChapter 14, Material Specific Seismic Design and Detailing Requirements
Section 14.2.2.1
14.2.2.1 Definitions
Section 14.2.4
14.2.4 Additional Design and Detailing Requirements for Precast Concrete Diaphragms
14.2.4.1 Diaphragm Seismic Demand Levels <\/td>\n<\/tr>\n
76<\/td>\nFIGURE 14.2.4-1 Diaphragm Seismic Demand Level
14.2.4.1.1 Diaphragm Span
14.2.4.1.2 Diaphragm Aspect Ratio
14.2.4.1.3 Diaphragm Shear Amplification Factor
14.2.4.2 Diaphragm Design Options
14.2.4.2.1 Elastic Design Option <\/td>\n<\/tr>\n
77<\/td>\n14.2.3.2.2 Basic Design Option
14.2.3.2.3 Reduced Design Option
14.2.4.3 Diaphragm Connector or Joint Reinforcement Deformability
14.2.4.3.1 Low Deformability Element (LDE).
14.2.4.3.2 Moderate Deformability Element (MDE)
14.2.4.3.3 High Deformability Element (HDE)
14.2.4.3.4 Connector\/ Joint Reinforcement Classification
14.2.4.3.5 Special Inspection
14.2.4.4 Precast Concrete Diaphragm Connector and Joint Reinforcement Qualification Procedure <\/td>\n<\/tr>\n
78<\/td>\n14.2.4.4.1 Test Modules
14.2.4.4.2 Number of Tests
14.2.4.4.3 Test Configuration
14.2.4.4.4 Instrumentation
14.2.4.4.5 Loading Protocols <\/td>\n<\/tr>\n
79<\/td>\n14.2.4.4.6 Measurement Indices, Test Observations and Acquisition of Data
FIGURE 14.2.4-2 Backbone Qualification Curve <\/td>\n<\/tr>\n
80<\/td>\nFIGURE 14.2.4-3 Deformation Curve Types
14.2.4.4.7 Response Properties
14.2.4.4.8 Test Report <\/td>\n<\/tr>\n
81<\/td>\n14.2.4.4.9 Deformed Bar Reinforcement <\/td>\n<\/tr>\n
83<\/td>\nChapter 15, Seismic Design Requirements for Nonbuilding Structures
Section 15.4.1
15.4.1 Design Basis <\/td>\n<\/tr>\n
85<\/td>\nChapter 16, Seismic Response History Procedures
16.1 GENERAL REQUIREMENTS
16.1.1 Design
16.1.2 Documentation <\/td>\n<\/tr>\n
86<\/td>\n16.2 GROUND MOTIONS
16.2.1 Level of Ground Motion
16.2.2 Development of the Target Response Spectrum
16.2.2.1 Method 1
16.2.2.2 Method 2
16.2.3 Ground Motions Selection
16.2.3.1 Minimum Number of Ground Motions
16.2.3.2 Components of Ground Motion <\/td>\n<\/tr>\n
87<\/td>\n16.2.3.3 Selection of Ground Motions
16.2.4 Ground Motion Scaling
16.2.4.1 Period Range for Scaling
16.2.4.2 Scaling of Ground Motions
16.2.4.3 Spectral Matching of Ground Motions
16.2.5 Application of Ground Motions to the Structural Model <\/td>\n<\/tr>\n
88<\/td>\n16.2.5.1 Orientation of Ground Motions
16.2.5.2 Application of Input Ground Motion over Subterranean Levels
16.3 MODELING AND ANALYSIS
16.3.1 System Modeling
16.3.2 Gravity Load
16.3.3 P-delta Effects
16.3.4 Seismic Mass
16.3.5 Diaphragm Modeling
16.3.6 Torsion <\/td>\n<\/tr>\n
89<\/td>\n16.3.7 Stiffness of Elements Modeled with Elastic Properties
16.3.8 Nonlinear Modeling
16.3.9 Damping
16.3.10 Soil-Structure Interaction (SSI)
16.4 ANALYSIS RESULTS AND ACCEPTANCE CRITERIA
16.4.1 Global Acceptance Criteria
16.4.1.1 Unacceptable Response <\/td>\n<\/tr>\n
90<\/td>\n16.4.1.2 Story Drift
16.4.2 Element-Level Acceptance Criteria
16.4.2.1 Force-Controlled Actions
16.4.2.2 Deformation-Controlled Actions <\/td>\n<\/tr>\n
91<\/td>\n16.4.2.3 Components of the Gravity System
16.5 DESIGN REVIEW
16.5.1 Reviewer Qualifications
16.5.2 Review Scope <\/td>\n<\/tr>\n
93<\/td>\nChapter 17, Seismic Design Requirements For Seismically Isolated Structures
17.1 GENERAL
17.1.2 Definitions
17.1.3 Notation <\/td>\n<\/tr>\n
96<\/td>\n17.2 GENERAL DESIGN REQUIREMENTS
17.2.1 Importance Factor
17.2.2 Configuration
17.2.3 Redundancy
17.2.4 Isolation System
17.2.4.1 Environmental Conditions
17.2.4.2 Wind Forces
17.2.4.3 Fire Resistance <\/td>\n<\/tr>\n
97<\/td>\n17.2.4.4 Lateral Restoring Force
17.2.4.5 Displacement Restraint
17.2.4.6 Vertical-Load Stability
17.2.4.7 Overturning
17.2.4.8 Inspection and Replacement <\/td>\n<\/tr>\n
98<\/td>\n17.2.4.9 Quality Control
17.2.5 Structural System
17.2.5.1 Horizontal Distribution of Force
17.2.5.2 Minimum Building Separations
17.2.5.3 Nonbuilding Structures
17.2.5.4 Steel Ordinary Concentrically Braced Frames
17.2.5.5 Steel Grid Frames
17.2.6 Elements of Structures and Nonstructural Components
17.2.6.1 Components at or above the Isolation Interface <\/td>\n<\/tr>\n
99<\/td>\n17.2.6.2 Components Crossing the Isolation Interface
17.2.6.3 Components below the Isolation Interface
17.2.7 Seismic Load Effects and Load Combinations
17.2.7.1 Isolator Unit Vertical Load Combinations
17.2.8 Isolation System Properties
17.2.8.1 Isolation System Component Types
17.2.8.2 Isolator Unit Nominal Properties
17.2.8.3 Bounding Properties of Isolation System Components <\/td>\n<\/tr>\n
100<\/td>\n17.2.8.4 Property Modification Factors <\/td>\n<\/tr>\n
101<\/td>\n17.2.8.5 Upper-Bound and Lower-Bound Force-Deflection Behavior of Isolation System Components
17.2.8.6 Isolation System Properties at Maximum Displacements
17.3 SEISMIC GROUND MOTION CRITERIA
17.3.1 Site-Specific Seismic Hazard <\/td>\n<\/tr>\n
102<\/td>\n17.3.2 MCER Response Spectra and Spectral Response Acceleration Parameters, SMS, SM1
17.3.4 MCER Ground Motion Records
17.4\u2002 ANALYSIS PROCEDURE SELECTION
17.4.1 Equivalent Lateral Force Procedure <\/td>\n<\/tr>\n
103<\/td>\n17.4.2 Dynamic Procedures
17.4.2.1 Response Spectrum Analysis Procedure
17.4.2.2 Response History Analysis Procedure
17.5\u2002 EQUIVALENT LATERAL FORCE PROCEDURE
17.5.1 General
17.5.2 Deformation Characteristics of the Isolation System <\/td>\n<\/tr>\n
104<\/td>\n17.5.3 Minimum Lateral Displacements Required for Design
17.5.3.1 Maximum Displacement
17.5.3.2 Effective Period at the Maximum Displacement <\/td>\n<\/tr>\n
105<\/td>\n17.5.3.3 Total Maximum Displacement
17.5.4 Minimum Lateral Forces Required for Design
17.5.4.1 Isolation System and Structural Elements below the Base Level <\/td>\n<\/tr>\n
106<\/td>\n17.5.4.2 Structural Elements above the Base Level <\/td>\n<\/tr>\n
107<\/td>\n17.5.4.3 Limits on Vs
17.5.5 Vertical Distribution of Force <\/td>\n<\/tr>\n
108<\/td>\n17.5.6 Drift Limits
17.6 DYNAMIC ANALYSIS PROCEDURES
17.6.1 General
17.6.2 Modeling
17.6.2.1 Isolation System
17.6.2.2 Isolated Structure <\/td>\n<\/tr>\n
109<\/td>\n17.6.3 Description of Procedures
17.6.3.1 General
17.6.3.2 MCER Ground Motions
17.6.3.3 Response-Spectrum Analysis Procedure
17.6.3.4 Response-History Analysis Procedure
17.6.3.4.1 Accidental Mass Eccentricity <\/td>\n<\/tr>\n
110<\/td>\n17.6.4 Minimum Lateral Displacements and Forces
17.6.4.1 Isolation System and Structural Elements below the Base Level
17.6.4.2 Structural Elements above the Base Level
17.6.4.3 Scaling of Results <\/td>\n<\/tr>\n
111<\/td>\n17.6.4.4 Drift Limits
17.7\u2002 DESIGN REVIEW
17.8\u2002 TESTING
17.8.1 General
17.8.1.2 Qualification Tests <\/td>\n<\/tr>\n
112<\/td>\n17.8.2 Prototype Tests
17.8.2.1 Record
17.8.2.2 Sequence and Cycles
17.8.2.3 Dynamic Testing <\/td>\n<\/tr>\n
113<\/td>\n17.8.2.4 Units Dependent on Bilateral Load
17.8.2.5 Maximum and Minimum Vertical Load
17.8.2.6 Sacrificial Wind-Restraint Systems
17.8.2.7 Testing Similar Units <\/td>\n<\/tr>\n
114<\/td>\n17.8.3 Determination of Force-Deflection Characteristics <\/td>\n<\/tr>\n
115<\/td>\nFIGURE 17.8.3-1 Nominal Properties of the Isolator Bilinear Force-Deflection Model
17.8.4 Test Specimen Adequacy <\/td>\n<\/tr>\n
116<\/td>\n17.8.5 Production Tests <\/td>\n<\/tr>\n
117<\/td>\nChapter 18, Seismic Design Requirements For Structures with Damping Systems
18.1 GENERAL
18.1.1 Scope
18.1.2 Definitions
18.1.3 Notation <\/td>\n<\/tr>\n
121<\/td>\n18.2 GENERAL DESIGN REQUIREMENTS
18.2.1 System Requirements <\/td>\n<\/tr>\n
122<\/td>\n18.2.1.1 Seismic Force-Resisting System
18.2.1.2 Damping System
18.2.2 Seismic Ground Motion Criteria
18.2.2.1 Design Earthquake and MCER Response Spectra <\/td>\n<\/tr>\n
123<\/td>\n18.2.2.2 Design Earthquake and MCER Ground Motion Records
18.2.3 Procedure Selection
18.2.3.1 Response-Spectrum Procedure <\/td>\n<\/tr>\n
124<\/td>\n18.2.3.2 Equivalent Lateral Force Procedure
18.2.4 Damping System
18.2.4.1 Device Design
18.2.4.2 Multiaxis Movement
18.2.4.3 Inspection and Periodic Testing <\/td>\n<\/tr>\n
125<\/td>\n18.2.4.4 Nominal Design Properties
18.2.4.5 Maximum and Minimum Damper Properties <\/td>\n<\/tr>\n
126<\/td>\n18.2.4.6 Damping System Redundancy
18.3 NONLINEAR RESPONSE-HISTORY PROCEDURE
18.3.1 Damping Device Modeling <\/td>\n<\/tr>\n
127<\/td>\n18.3.2 Accidental Mass Eccentricity
18.3.3 Response Parameters
18.4 SEISMIC LOAD CONDITIONS AND ACCEPTANCE CRITERIA FOR NONLINEAR RESPONSE-HISTORY PROCEDURE
18.4.1 Seismic Force-Resisting System
18.4.2 Damping System
18.4.3 Combination of Load Effects <\/td>\n<\/tr>\n
128<\/td>\n18.4.4 Acceptance Criteria for the Response Parameters of Interest
18.5 DESIGN REVIEW
18.6 TESTING
18.6.1 Prototype Tests <\/td>\n<\/tr>\n
129<\/td>\n18.6.1.1 Data Recording
18.6.1.2 Sequence and Cycles of Testing <\/td>\n<\/tr>\n
130<\/td>\n18.6.1.3 Testing Similar Devices
18.6.1.4 Determination of Force-Velocity-Displacement Characteristics
18.6.1.5 Device Adequacy <\/td>\n<\/tr>\n
131<\/td>\n18.6.1.5.1 Displacement-Dependent Damping Devices
18.6.1.5.2 Velocity-Dependent Damping Devices <\/td>\n<\/tr>\n
132<\/td>\n18.6.2 Production Tests
18.7 ALTERNATE PROCEDURES AND CORRESPONDING ACCEPTANCE CRITERIA
18.7.1 Response Spectrum Procedure
18.7.1.1 Modeling <\/td>\n<\/tr>\n
133<\/td>\n18.7.1.2 Seismic Force-Resisting System
18.7.1.2.1 Seismic Base Shear
18.7.1.2.2 Modal Base Shear
18.7.1.2.3 Modal Participation Factor
18.7.1.2.4 Fundamental Mode Seismic Response Coefficient <\/td>\n<\/tr>\n
134<\/td>\n18.7.1.2.5 Effective Fundamental Mode Period Determination
18.7.1.2.6 Higher Mode Seismic Response Coefficient
18.7.1.2.7 Design Lateral Force
18.7.1.3 Damping System <\/td>\n<\/tr>\n
135<\/td>\n18.7.1.3.1 Design Earthquake Floor Deflection
18.7.1.3.2 Design Earthquake Roof Displacement
18.7.1.3.3 Design Earthquake Story Drift
18.7.1.3.4 Design Earthquake Story Velocity <\/td>\n<\/tr>\n
136<\/td>\n18.7.1.3.5 MCER Response
18.7.2 Equivalent Lateral Force Procedure
18.7.2.1 Modeling <\/td>\n<\/tr>\n
137<\/td>\n18.7.2.2 Seismic Force-Resisting System
18.7.2.2.1 Seismic Base Shear
18.7.2.2.2 Fundamental Mode Base Shear
18.7.2.2.3 Fundamental Mode Properties <\/td>\n<\/tr>\n
138<\/td>\n18.7.2.2.4 Fundamental Mode Seismic Response Coefficient
18.7.2.2.5 Effective Fundamental Mode Period Determination
18.7.2.2.6 Residual Mode Base Shear <\/td>\n<\/tr>\n
139<\/td>\n18.7.2.2.7 Residual Mode Properties
18.7.2.2.8 Residual Mode Seismic Response Coefficient
18.7.2.2.9 Design Lateral Force
18.7.2.3 Damping System <\/td>\n<\/tr>\n
140<\/td>\n18.7.2.3.1 Design Earthquake Floor Deflection
18.7.2.3.2 Design Earthquake Roof Displacement
18.7.2.3.3 Design Earthquake Story Drift
18.7.2.3.4 Design Earthquake Story Velocity <\/td>\n<\/tr>\n
141<\/td>\n18.7.2.3.5 MCER Response
18.7.3 Damped Response Modification
18.7.3.1 Damping Coefficient <\/td>\n<\/tr>\n
142<\/td>\n18.7.3.2 Effective Damping <\/td>\n<\/tr>\n
143<\/td>\n18.7.3.2.1 Inherent Damping
18.7.3.2.2 Hysteretic Damping
18.7.3.2.2.1 Hysteresis Loop Adjustment Factor
18.7.3.2.3 Viscous Damping <\/td>\n<\/tr>\n
144<\/td>\n18.7.3.3 Effective Ductility Demand <\/td>\n<\/tr>\n
145<\/td>\n18.7.3.4 Maximum Effective Ductility Demand
18.7.4 Seismic Load Conditions and Acceptance Criteria for RSA and ELF Procedures
18.7.4.1 Seismic Force-Resisting System <\/td>\n<\/tr>\n
146<\/td>\n18.7.4.2 Damping System
18.7.4.3 Combination of Load Effects
18.7.4.4 Modal Damping System Design Forces
18.7.4.5 Seismic Load Conditions and Combination of Modal Responses <\/td>\n<\/tr>\n
148<\/td>\n18.7.4.6 Inelastic Response Limits <\/td>\n<\/tr>\n
149<\/td>\nChapter 19, Soil Structure Interaction for Seismic Design
19.1 General
19.1.1 Scope
19.1.2 Definitions
19.1.2 Notation <\/td>\n<\/tr>\n
150<\/td>\n19.2 SSI Adjusted Structural Demands
19.2.1 Equivalent Lateral Force Procedure <\/td>\n<\/tr>\n
193<\/td>\nChapter 24, Alternative Seismic Design Requirements For Seismic Design Category B Buildings
24.1 GENERAL
24.1.1 Scope and Applicability
24.2 STRUCTURAL DESIGN BASIS
24.2.1 Basic Requirements
24.2.2 Member Design, Connection Design, and Deformation Limit
24.2.3 Continuous Load Path and Interconnection <\/td>\n<\/tr>\n
194<\/td>\n24.2.4 Connection to Supports
24.2.5 Foundation Design
24.2.6 Material Design and Detailing Requirements
24.3 STRUCTURAL SYSTEM SELECTION
24.3.1 Selection and Limitations
24.3.2 Combinations of Framing Systems in Different Directions <\/td>\n<\/tr>\n
195<\/td>\n24.3.3 Combinations of Framing Systems in the Same Direction
24.3.3.1 R, Cd, and \u21260Values for Vertical Combinations
24.3.3.2 Two Stage Analysis Procedure
24.3.3.3 R, Cd, and \u21260 Values for Horizontal Combinations <\/td>\n<\/tr>\n
196<\/td>\n24.3.4 Combination Framing Detailing Requirements
24.3.5 System Specific Requirements
24.3.5.1 Dual System
24.3.5.2 Cantilever Column Systems
24.3.5.3 Inverted Pendulum-Type Structures
24.3.5.4 Shear Wall-Frame Interactive Systems
24.4 DIAPHRAGM FLEXIBILITY AND CONFIGURATION IRREGULARITIES
24.4.1 Diaphragm Flexibility
24.4.1.1 Flexible Diaphragm Condition <\/td>\n<\/tr>\n
197<\/td>\n24.4.1.2 Rigid Diaphragm Condition
24.4.1.3 Calculated Flexible Diaphragm Condition
24.4.2 Irregular and Regular Classification
24.4.2.1 Horizontal Irregularity
24.4.2.2 Vertical Irregularity
24.4.3 Limitations and Additional Requirements for Systems with Structural Irregularities
24.4.3.1 Extreme Weak Stories
24.4.3.2 Elements Supporting Discontinuous Walls or Frames <\/td>\n<\/tr>\n
198<\/td>\n24.5 SEISMIC LOAD EFFECTS AND COMBINATIONS
24.5.1 Applicability
24.5.2 Seismic Load Effect
24.5.2.1 Seismic Load Combinations
24.5.3 Seismic Load Effect Including Overstrength Factor <\/td>\n<\/tr>\n
199<\/td>\n24.5.3.1 Load Combinations with Overstrength Factor
24.5.3.2 Allowable Stress Increase for Load Combinations with Overstrength
24.6 DIRECTION OF LOADING
24.7 ANALYSIS PROCEDURE SELECTION <\/td>\n<\/tr>\n
200<\/td>\n24.8 MODELING CRITERIA
24.8.1 Foundation Modeling
24.8.2 Effective Seismic Weight
24.8.3 Structural Modeling
24.8.4 Interaction Effects <\/td>\n<\/tr>\n
201<\/td>\n24.9 EQUIVALENT LATERAL FORCE PROCEDURE
24.9.1 Seismic Base Shear
24.9.2 Period Determination
24.9.2.1 Approximate Fundamental Period <\/td>\n<\/tr>\n
202<\/td>\n24.9.3 Vertical Distribution of Seismic Forces
24.9.4 Horizontal Distribution of Forces
24.9.4.1 Inherent Torsion <\/td>\n<\/tr>\n
203<\/td>\n24.9.4.2 Accidental Torsion
24.9.5 Overturning
24.9.6 Story Drift Determination
24.9.6.1 Minimum Base Shear for Computing Drift
24.9.6.2 Period for Computing Drift
24.9.7 P-Delta Effects <\/td>\n<\/tr>\n
204<\/td>\n24.10 MODAL RESPONSE SPECTRUM ANALYSIS
24.10.1 Number of Modes
24.10.2 Modal Response Parameters
24.10.3 Combined Response Parameters <\/td>\n<\/tr>\n
205<\/td>\n24.10.4 Scaling Design Values of Combined Response
24.10.4.1 Scaling of Forces
24.10.5 Horizontal Shear Distribution
24.10.6 P-Delta Effects
24.11 DIAPHRAGMS, CHORDS, AND COLLECTORS
24.11.1 Diaphragm Design
24.11.1.1 Diaphragm Design Forces <\/td>\n<\/tr>\n
206<\/td>\n24.11.2 Collector Elements
24.12 STRUCTURAL WALLS AND THEIR ANCHORAGE
24.12.1 Design for Out-of-Plane Forces
24.12.2 Anchorage of Structural Walls <\/td>\n<\/tr>\n
207<\/td>\n24.13 DRIFT AND DEFORMATION
24.13.1 Story Drift Limit
24.13.2 Diaphragm Deflection
24.13.3 Structural Separation
24.13.4 Members Spanning between Structures <\/td>\n<\/tr>\n
208<\/td>\n24.14 FOUNDATION DESIGN
24.14.1 Design Basis
24.14.2 Materials of Construction
24.14.3 Foundation Load-Deformation Characteristics
24.14.4 Reduction of Foundation Overturning
24.15 SEISMIC DESIGN REQUIREMENTS FOR EGRESS STAIRWAYS AND PARAPETS
24.15.1 Scope
24.15.2 General Design Requirements
24.15.2.1 Submittal Requirements <\/td>\n<\/tr>\n
209<\/td>\n24.15.2.2 Construction Documents
24.15.3 Seismic Design Force
24.15.4 Design of Egress Stairways for Seismic Relative Displacements <\/td>\n<\/tr>\n
210<\/td>\n24.15.4.1 Displacements within Structures
24.15.4.2 Displacements between Structures <\/td>\n<\/tr>\n
211<\/td>\n24.15.5 Out-of-Plane Bending
24.15.6 Anchorage
24.15.6.1 Design Force in the Attachment
24.15.6.2 Anchors in Concrete or Masonry
24.15.6.3 Installation Conditions
24.15.6.4 Multiple Attachments
24.15.6.5 Power Actuated Fasteners <\/td>\n<\/tr>\n
217<\/td>\nPART 2, COMMENTARY <\/td>\n<\/tr>\n
219<\/td>\nCommentary to Chapter 11, Seismic Design Commentary
C11.1 GENERAL <\/td>\n<\/tr>\n
220<\/td>\nC11.1.1 Purpose
C11.1.2 Scope <\/td>\n<\/tr>\n
221<\/td>\nC11.1.3 Applicability
C11.1.4 Alternate Materials and Methods of Construction
C11.2 DEFINITIONS <\/td>\n<\/tr>\n
222<\/td>\nFIGURE C11-1\u2002Examples of Components, Supports, and Attachments <\/td>\n<\/tr>\n
223<\/td>\nFIGURE C11-2 Base for a Level Site
FIGURE C11-3 Base at Ground Floor Level <\/td>\n<\/tr>\n
224<\/td>\nFIGURE C11-4 Base at Level Closest to Grade Elevation
FIGURE C11-5 Base Below Substantial Openings in Basement Wall
FIGURE C11-6 Base at Foundation Level Where There Are Full-Length Exterior Shear Walls <\/td>\n<\/tr>\n
226<\/td>\nFIGURE C11-7 Building with Tie-Back or Cantilevered Retaining Wall That Is Separate from the Building
FIGURE C11-8 Building with Vertical Elements of the Seismic Force-Resisting System Supporting Lateral Earth Pressures
FIGURE C11-9 Building with Vertical Elements of the Seismic Force-Resisting System Supporting Lateral Earth Pressures <\/td>\n<\/tr>\n
227<\/td>\nFIGURE C11-10\u2002Illustration of Definition of Story above Grade Plane
C11.3 SYMBOLS
C11.4 SEISMIC GROUND MOTION VALUES <\/td>\n<\/tr>\n
228<\/td>\nC11.4.1 Mapped Acceleration Parameters
C11.4.2 Site Class
C11.4.3 Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration Parameters <\/td>\n<\/tr>\n
231<\/td>\nC11.4.4 Design Spectral Acceleration Parameters
C11.4.5 Design Response Spectrum <\/td>\n<\/tr>\n
232<\/td>\nC11.4.7 Site-Specific Ground Motion Procedures <\/td>\n<\/tr>\n
234<\/td>\nFIGURE C11.4-1 Comparison of ELF and Multi-Period Design Spectra \u2013 Site Class C Ground Motions (vs,30 = 1,600 ft\/s)
FIGURE C11.4-2 Comparison of ELF and Multi-Period Design Spectra \u2013 Site Class D Ground Motions (vs,30 = 870 ft\/s) <\/td>\n<\/tr>\n
235<\/td>\nFIGURE C11.4-3 Comparison of ELF and Multi-Period Design Spectra \u2013 Site Class E Ground Motions (vs,30 = 510 ft\/s) <\/td>\n<\/tr>\n
236<\/td>\nC11.5 IMPORTANCE FACTOR AND RISK CATEGORY <\/td>\n<\/tr>\n
237<\/td>\nFIGURE C11-11 Expected Performance as Related to Risk Category and Level of Ground Motion
C11.5.1 Importance Factor
C11.5.2 Protected Access for Risk Category IV
C11.6 SEISMIC DESIGN CATEGORY <\/td>\n<\/tr>\n
240<\/td>\nC11.7 DESIGN REQUIREMENTS FOR SEISMIC DESIGN CATEGORY A
C11.8 GEOLOGIC HAZARDS AND GEOTECHNICAL INVESTIGATION <\/td>\n<\/tr>\n
244<\/td>\nREFERENCES <\/td>\n<\/tr>\n
245<\/td>\nCommentary to Chapter 12, Seismic Design Requirements for Building Structures
C12.1 STRUCTURAL DESIGN BASIS
C12.1.1 Basic Requirements <\/td>\n<\/tr>\n
246<\/td>\nFIGURE C12.1-1\u2002Inelastic Force\u2013Deformation Curve <\/td>\n<\/tr>\n
248<\/td>\nFIGURE C12.1-2\u2002Typical Hysteretic Curves <\/td>\n<\/tr>\n
249<\/td>\nC12.1.2 Member Design, Connection Design, and Deformation Limit
C12.1.3 Continuous Load Path and Interconnection
C12.1.4 Connection to Supports
C12.1.5 Foundation Design <\/td>\n<\/tr>\n
250<\/td>\nC12.1.6 Material Design and Detailing Requirements
C12.2 STRUCTURAL SYSTEM SELECTION
C12.2.1 Selection and Limitations <\/td>\n<\/tr>\n
251<\/td>\nC12.2.1.1 Alternative Structural Systems <\/td>\n<\/tr>\n
252<\/td>\nC12.2.1.2 Substitute Elements
C12.2.2 Combinations of Framing Systems in Different Directions <\/td>\n<\/tr>\n
253<\/td>\nC12.2.3 Combinations of Framing Systems in the Same Direction
C12.2.3.1 R, Cd, and \u03a90 Values for Vertical Combinations
C12.2.3.2 Two-Stage Analysis Procedure
C12.2.3.3 R, Cd, and \u03a90 Values for Horizontal Combinations
C12.2.4 Combination Framing Detailing Requirements
C12.2.5 System-Specific Requirements
C12.2.5.1 Dual System <\/td>\n<\/tr>\n
254<\/td>\nC12.2.5.2 Cantilever Column Systems
C12.2.5.3 Inverted Pendulum-Type Structures
C12.2.5.4 Increased Structural Height Limit for Steel Eccentrically Braced Frames, Steel Special Concentrically Braced Frames, Steel Buckling-Restrained Braced Frames, Steel Special Plate Shear Walls, and Special Reinforced Concrete Shear Walls
C12.2.5.5 Special Moment Frames in Structures Assigned to Seismic Design Categories D through F <\/td>\n<\/tr>\n
255<\/td>\nC12.2.5.6 Steel Ordinary Moment Frames
C12.2.5.6.1 Seismic Design Category D or E <\/td>\n<\/tr>\n
256<\/td>\nC12.2.5.6.2 Seismic Design Category F
C12.2.5.7 Steel Intermediate Moment Frames <\/td>\n<\/tr>\n
257<\/td>\nC12.2.5.7.1 Seismic Design Category D
C12.2.5.7.2 Seismic Design Category E
C12.2.5.7.3 Seismic Design Category F
C12.2.5.8 Shear Wall\u2013Frame Interactive Systems
C12.3 DIAPHRAGM FLEXIBILITY, CONFIGURATION IRREGULARITIES, AND REDUNDANCY
C12.3.1 Diaphragm Flexibility <\/td>\n<\/tr>\n
258<\/td>\nC12.3.1.1 Flexible Diaphragm Condition
C12.3.1.2 Rigid Diaphragm Condition
C12.3.1.3 Calculated Flexible Diaphragm Condition
C12.3.2 Irregular and Regular Classification <\/td>\n<\/tr>\n
259<\/td>\nC12.3.2.1 Horizontal Irregularity <\/td>\n<\/tr>\n
260<\/td>\nFIGURE C12.3-1\u2002Horizontal Structural Irregularity Examples
C12.3.2.2 Vertical Irregularity <\/td>\n<\/tr>\n
261<\/td>\nFIGURE C12.3-2\u2002Vertical Structural Irregularities
C12.3.3 Limitations and Additional Requirements for Systems with Structural Irregularities
C12.3.3.1 Prohibited Horizontal and Vertical Irregularities for Seismic Design Categories D through F <\/td>\n<\/tr>\n
262<\/td>\nC12.3.3.2 Extreme Weak Stories
C12.3.3.3 Elements Supporting Discontinuous Walls or Frames
FIGURE C12.3-3\u2002Vertical In-Plane-Discontinuity Irregularity from Columns or Perpendicular Walls (Type 4)
FIGURE C12.3-4\u2002Vertical In-Plane-Discontinuity Irregularity from Walls with Significant Offsets (Type 4) <\/td>\n<\/tr>\n
263<\/td>\nFIGURE C12.3-5\u2002Discontinued Wood Light-Frame Shear Wall
C12.3.3.4 Increase in Forces Because of Irregularities for Seismic Design Categories D through F
C12.3.4 Redundancy <\/td>\n<\/tr>\n
264<\/td>\nC12.3.4.1 Conditions Where Value of \u03c1 is 1.0
C12.3.4.2 Redundancy Factor, \u03c1, for Seismic Design Categories D through F <\/td>\n<\/tr>\n
265<\/td>\nFIGURE C12.3-6 Calculation of the Redundancy Factor, \u03c1 <\/td>\n<\/tr>\n
266<\/td>\nC12.4 SEISMIC LOAD EFFECTS AND COMBINATIONS
C12.4.1 Applicability
C12.4.2 Seismic Load Effect <\/td>\n<\/tr>\n
267<\/td>\nC12.4.2.1 Horizontal Seismic Load Effect
C12.4.2.2 Vertical Seismic Load Effect
C12.4.2.3 Seismic Load Combinations
C12.4.3 Seismic Load Effect Including Overstrength Factor
C12.4.3.1 Horizontal Seismic Load Effect with Overstrength Factor <\/td>\n<\/tr>\n
268<\/td>\nC12.4.3.2 Load Combinations with Overstrength Factor
C12.4.3.3 Allowable Stress Increase for Load Combinations with Overstrength
C12.4.4 Minimum Upward Force for Horizontal Cantilevers for Seismic Design Categories D through F
C12.5 DIRECTION OF LOADING
C12.5.1 Direction of Loading Criteria
C12.5.2 Seismic Design Category B <\/td>\n<\/tr>\n
269<\/td>\nC12.5.3 Seismic Design Category C <\/td>\n<\/tr>\n
270<\/td>\nC12.5.4 Seismic Design Categories D through F
C12.6 ANALYSIS PROCEDURE SELECTION <\/td>\n<\/tr>\n
271<\/td>\nC12.7 MODELING CRITERIA
C12.7.1 Foundation Modeling <\/td>\n<\/tr>\n
272<\/td>\nC12.7.2 Effective Seismic Weight
C12.7.3 Structural Modeling <\/td>\n<\/tr>\n
273<\/td>\nC12.7.4 Interaction Effects
FIGURE C12.7-1 Undesired Interaction Effects
C12.8 EQUIVALENT LATERAL FORCE PROCEDURE <\/td>\n<\/tr>\n
274<\/td>\nC12.8.1 Seismic Base Shear
C12.8.1.1 Calculation of Seismic Response Coefficient
FIGURE C12.8-1\u2002Seismic Response Coefficient Versus Period <\/td>\n<\/tr>\n
275<\/td>\nC12.8.1.2 Soil\u2013Structure Interaction Reduction
C12.8.1.3 Maximum SS Value in Determination of Cs
C12.8.2 Period Determination <\/td>\n<\/tr>\n
277<\/td>\nFIGURE C12.8-2 Variation of Fundamental Period with Structural Height
C12.8.2.1 Approximate Fundamental Period <\/td>\n<\/tr>\n
278<\/td>\nC12.8.3 Vertical Distribution of Seismic Forces
FIGURE C12.8-3\u2002Basis of Eq. (12.8-12)
FIGURE C12.8-4\u2002Variation of Exponent k with Period T <\/td>\n<\/tr>\n
279<\/td>\nC12.8.4 Horizontal Distribution of Forces
C12.8.4.1 Inherent Torsion <\/td>\n<\/tr>\n
280<\/td>\nC12.8.4.2 Accidental Torsion <\/td>\n<\/tr>\n
281<\/td>\nC12.8.4.3 Amplification of Accidental Torsional Moment <\/td>\n<\/tr>\n
282<\/td>\nFIGURE C12.8-5\u2002Torsional Amplification Factor for Symmetric Rectangular Buildings
C12.8.5 Overturning
C12.8.6 Story Drift Determination <\/td>\n<\/tr>\n
283<\/td>\nFIGURE C12.8-6\u2002Displacements Used to Compute Drift <\/td>\n<\/tr>\n
284<\/td>\nC12.8.6.1 Minimum Base Shear for Computing Drift
C12.8.6.2 Period for Computing Drift
C12.8.7 P-Delta Effects
FIGURE C12.8-7\u2002Idealized Response of a One-Story Structure with and without P-\u0394 <\/td>\n<\/tr>\n
288<\/td>\nC12.9 MODAL RESPONSE SPECTRUM ANALYSIS AND LINEAR RESPONSE HISTORY ANALYSIS
C12.9.1 Modal Response Spectrum Analysis <\/td>\n<\/tr>\n
289<\/td>\nC12.9.1.1 Number of Modes
C12.9.1.2 Modal Response Parameters
C12.9.1.3 Combined Response Parameters <\/td>\n<\/tr>\n
290<\/td>\nC12.9.1.4 Scaling Design Values of Combined Response
C12.9.1.4.1 Scaling of Forces
C12.9.1.4.2 Scaling of Drifts
C12.9.1.5 Horizontal Shear Distribution <\/td>\n<\/tr>\n
291<\/td>\nC12.9.1.6 P-Delta Effects
C12.9.1.7 Soil\u2013Structure Interaction Reduction
C12.9.1.8 Structural Modeling <\/td>\n<\/tr>\n
292<\/td>\nC12.9.2 Linear Response History Analysis
C12.9.2.1 General Requirements
12.9.2.2 General Modeling Requirements
C12.9.2.2.1 P-Delta Effects <\/td>\n<\/tr>\n
293<\/td>\nC12.9.2.2.2 Accidental Torsion
C12.9.2.2.3 Foundation Modeling
C12.9.2.2.4 Number of Modes to Include in Response History Analysis
C12.9.2.2.5 Damping <\/td>\n<\/tr>\n
294<\/td>\nC12.9.2.3 Ground Motion Selection and Scaling
FIGURE C12.9-1 Spectral Matching vs. Amplitude Scaled Response Spectra
C12.9.2.3.1 Procedure for Spectrum Matching <\/td>\n<\/tr>\n
295<\/td>\nC12.9.2.4 Application of Ground Acceleration Histories
C12.9.2.5 Modification of Response for Inelastic Behavior
C12.9.2.6 Enveloping of Force Response Quantities <\/td>\n<\/tr>\n
296<\/td>\nC12.10 DIAPHRAGMS, CHORDS, AND COLLECTORS
C12.10.1 Diaphragm Design
FIGURE C12.10-1\u2002Diaphragm with an Opening <\/td>\n<\/tr>\n
297<\/td>\nFIGURE C12.10-2\u2002Diaphragm with a Reentrant Corner
C12.10.1.1 Diaphragm Design Forces
C12.10.2.1 Collector Elements Requiring Load Combinations with Overstrength Factor for Seismic Design Categories C through F
C12.10.3 Diaphragms Including Chords and Collectors <\/td>\n<\/tr>\n
298<\/td>\nC12.10.3.1 Diaphragm Design
C12.10.3.2 Seismic Design Forces for Diaphragms including Chords and Collectors <\/td>\n<\/tr>\n
299<\/td>\nfigure 12.10-3 Comparison of Factors \u0393m1 and \u0393m2 Obtained from Analytical Models and Actual Structures with Those Predicted by Eqs. 12.10-11 and 12.10-12 <\/td>\n<\/tr>\n
300<\/td>\nfigure 12.10-4 Comparison of Measured Floor Accelerations and Accelerations Predicted by Eq. 12.10-4 for a 7-Story Bearing Wall Building (Panagiotou et al., 2011) <\/td>\n<\/tr>\n
301<\/td>\nfigure 12.10-5 Comparison of Measured Floor Accelerations and Accelerations Predicted by Eq. 12.10-4 for a 5-Story Special MRF Building (Chen et al., 2013)
figure 12.10-6 Comparison of Measured Floor Accelerations with Proposed Eqs. 12.10-4 and 12.10-5 for Steel BRBF and Special MRF Buildings (Adapted from Choi et al. 2008) <\/td>\n<\/tr>\n
302<\/td>\nfigure 12.10-7 Diaphragm Design Acceleration Coefficient Cpx for Buildings with Non-Uniform Mass Distribution
C12.10.3.3 Transfer Diaphragms <\/td>\n<\/tr>\n
303<\/td>\nC12.10.3.4 Collectors
C12.10.3.5 Diaphragm Design Force Reduction Factor <\/td>\n<\/tr>\n
304<\/td>\nFIGURE 12.10-8 Diaphragm Inelastic Response Models for (a) a Diaphragm System that is not Expected to Exhibit a Distinct Yield Point and (b) a Diaphragm System that does Exhibit a Distinct Yield Point <\/td>\n<\/tr>\n
307<\/td>\nFIGURE C12.10-9 Relationships: (a) \uf06dglobal-\uf06dlocal and (b) Rdia-\uf06dglobal <\/td>\n<\/tr>\n
308<\/td>\nFIGURE C12.10-10 Diaphragm Shear Overstrength Factor: (a) BDO; (b) RDO (Fleischman et al., 2012) <\/td>\n<\/tr>\n
309<\/td>\nC12.11 STRUCTURAL WALLS AND THEIR ANCHORAGE
C12.11.1 Design for Out-of-Plane Forces
C12.11.2 Anchorage of Structural Walls and Transfer of Design Forces into Diaphragms <\/td>\n<\/tr>\n
310<\/td>\nC12.11.2.1 Wall Anchorage Forces
C12.11.2.2 Additional Requirements for Diaphragms in Structures Assigned to Seismic Design Categories C through F
C12.11.2.2.1 Transfer of Anchorage Forces into Diaphragm
C12.11.2.2.2 Steel Elements of Structural Wall Anchorage System
C12.11.2.2.3 Wood Diaphragms <\/td>\n<\/tr>\n
311<\/td>\nFIGURE C12.11-1\u2002Typical Subdiaphragm Framing
C12.11.2.2.4 Metal Deck Diaphragms
C12.11.2.2.5 Embedded Straps <\/td>\n<\/tr>\n
312<\/td>\nC12.11.2.2.6 Eccentrically Loaded Anchorage System
FIGURE C12.11-2 Plan View of Wall Anchor with Misplaced Anchor Rod
C12.11.2.2.7 Walls with Pilasters
FIGURE C12.11-3\u2002Tributary Area Used to Determine Anchorage Force at Pilaster <\/td>\n<\/tr>\n
313<\/td>\nC12.12 DRIFT AND DEFORMATION <\/td>\n<\/tr>\n
314<\/td>\nC12.12.3 Structural Separation
C12.12.4 Members Spanning between Structures <\/td>\n<\/tr>\n
315<\/td>\nC12.12.5 Deformation Compatibility for Seismic Design Categories D through F
C12.13 FOUNDATION DESIGN
C12.13.1 Design Basis <\/td>\n<\/tr>\n
316<\/td>\nC12.13.3 Foundation Load-Deformation Characteristics <\/td>\n<\/tr>\n
317<\/td>\nC12.13.4 Reduction of Foundation Overturning
C12.13.5 Strength Design of Nominal Foundation Geotechncial Capacity
C12.13.5.1 Nominal Strength <\/td>\n<\/tr>\n
318<\/td>\nC12.13.5.2 Resistance Factors
C12.13.5.3 Acceptance Criteria <\/td>\n<\/tr>\n
319<\/td>\nC12.13.6 Requirements for Structures Assigned to Seismic Design Category C
C12.13.6.1 Pole-Type Structures
C12.13.6.2 Foundation Ties
C12.13.6.3 Pile Anchorage Requirements
C12.13.7 Requirements for Structures Assigned to Seismic Design Categories D through F
C12.13.7.1 Pole-Type Structures
C12.13.7.2 Foundation Ties
C12.13.7.3 General Pile Design Requirement <\/td>\n<\/tr>\n
320<\/td>\nC12.13.7.4 Batter Piles
C12.13.7.5 Pile Anchorage Requirements
C12.13.7.6 Splices of Pile Segments
C12.13.7.7 Pile\u2013Soil Interaction <\/td>\n<\/tr>\n
321<\/td>\nC12.13.7.8 Pile Group Effects
C12.13.8 Requirements for Structure Foundations on Liquefiable Sites <\/td>\n<\/tr>\n
323<\/td>\nC12.13.8.1 Foundation Design
C12.13.8.2 Shallow Foundation
FIGURE C12.13.8-1 Example Showing Differential Settlement Terms \u03b4v and L <\/td>\n<\/tr>\n
324<\/td>\nC12.13.8.3 Deep Foundations <\/td>\n<\/tr>\n
325<\/td>\nFIGURE C12.13.8-2 Determination of Ultimate Pile Capacity in Liquefiable Soils <\/td>\n<\/tr>\n
326<\/td>\nC12.14 SIMPLIFIED ALTERNATIVE STRUCTURAL DESIGN CRITERIA FOR SIMPLE BEARING WALL OR BUILDING FRAME SYSTEMS
C12.14.1 General
C12.14.1.1 Simplified Design Procedure <\/td>\n<\/tr>\n
327<\/td>\nFIGURE C12.14-1 Treatment of Closely Spaced Walls
C12.14.3 Seismic Load Effects and Combinations <\/td>\n<\/tr>\n
328<\/td>\nC12.14.7 Design and Detailing Requirements
C12.14.8 Simplified Lateral Force Analysis Procedure
C12.14.8.1 Seismic Base Shear
C12.14.8.2 Vertical Distribution
C12.14.8.5 Drift Limits and Building Separation
REFERENCES <\/td>\n<\/tr>\n
333<\/td>\nCommentary to Chapter 13, Seismic Design Requirements for Nonstructural Components
C13.1 GENERAL
FIGURE C13.1-1 Hospital Imaging Equipment That Fell from Overhead Mounts <\/td>\n<\/tr>\n
334<\/td>\nFIGURE C13.1-2 Collapsed Light Fixtures
FIGURE C13.1-3 Collapsed Duct and HVAC Diffuser
FIGURE C13.1-4 Damaged Ceiling System <\/td>\n<\/tr>\n
335<\/td>\nC13.1.1 Scope <\/td>\n<\/tr>\n
336<\/td>\nFIGURE C13.1-5 Toppled Storage Cabinets
FIGURE C13.1-6 Skid-Mounted Components
C13.1.2 Seismic Design Category
C13.1.3 Component Importance Factor <\/td>\n<\/tr>\n
337<\/td>\nC13.1.4 Exemptions <\/td>\n<\/tr>\n
338<\/td>\nC13.1.5 Application of Nonstructural Component Requirements to Nonbuilding Structures
C13.1.6 Reference Documents <\/td>\n<\/tr>\n
339<\/td>\nC13.1.7 Reference Documents Using Allowable Stress Design
C13.2 GENERAL DESIGN REQUIREMENTS
C13.2.1 Applicable Requirements for Architectural, Mechanical, and Electrical Components, Supports, and Attachments <\/td>\n<\/tr>\n
340<\/td>\nC13.2.2 Special Certification Requirements for Designated Seismic Systems <\/td>\n<\/tr>\n
341<\/td>\nC13.2.3 Consequential Damage
C13.2.4 Flexibility <\/td>\n<\/tr>\n
342<\/td>\nFIGURE C13.2-1 Schematic Plans Illustrating Branch Line Flexibility
C13.2.5 Testing Alternative for Seismic Capacity Determination <\/td>\n<\/tr>\n
343<\/td>\nC13.2.6 Experience Data Alternative for Seismic Capacity Determination <\/td>\n<\/tr>\n
344<\/td>\nC13.2.7 Construction Documents
C13.3 SEISMIC DEMANDS ON NONSTRUCTURAL COMPONENTS
C13.3.1 Seismic Design Force <\/td>\n<\/tr>\n
345<\/td>\nFIGURE C13.3-1 NCEER Formulation for ap as Function of Structural and Component Periods <\/td>\n<\/tr>\n
346<\/td>\nFIGURE C13.3-2 Lateral Force Magnitude over Height
C13.3.2 Seismic Relative Displacements <\/td>\n<\/tr>\n
347<\/td>\nC13.3.2.1 Displacements within Structures
FIGURE C13.3-3 Displacements over Less than Story Height <\/td>\n<\/tr>\n
348<\/td>\nC13.3.2.2 Displacements between Structures
FIGURE C13.3-4 Displacements between Structures
C13.4 NONSTRUCTURAL COMPONENT ANCHORAGE <\/td>\n<\/tr>\n
349<\/td>\nC13.4.1 Design Force in the Attachment
C13.4.2 Anchors in Concrete or Masonry <\/td>\n<\/tr>\n
350<\/td>\nC13.4.3 Installation Conditions
C13.4.4 Multiple Attachments <\/td>\n<\/tr>\n
351<\/td>\nC13.4.5 Power-Actuated Fasteners
C13.4.6 Friction Clips
FIGURE C13.4-1 C-Type Beam Clamp Equipped with a Restraining Strap <\/td>\n<\/tr>\n
352<\/td>\nC13.5 ARCHITECTURAL COMPONENTS
C13.5.1 General
C13.5.2 Forces and Displacements <\/td>\n<\/tr>\n
353<\/td>\nC13.5.3 Exterior Nonstructural Wall Elements and Connections <\/td>\n<\/tr>\n
354<\/td>\nC13.5.5 Out-of-Plane Bending
C13.5.6 Suspended Ceilings <\/td>\n<\/tr>\n
355<\/td>\nC13.5.6.1 Seismic Forces
C13.5.6.2 Industry Standard Construction for Acoustical Tile or Lay-In Panel Ceilings <\/td>\n<\/tr>\n
357<\/td>\nC13.5.6.2.1 Seismic Design Category C
C13.5.6.2.2 Seismic Design Categories D through F <\/td>\n<\/tr>\n
358<\/td>\nC13.5.6.3 Integral Construction
C13.5.7 Access Floors
C13.5.7.1 General
C13.5.7.2 Special Access Floors
C13.5.8 Partitions <\/td>\n<\/tr>\n
359<\/td>\nC13.5.9 Glass in Glazed Curtain Walls, Glazed Storefronts, and Glazed Partitions
C13.5.9.1 General
C13.5.9.2 Seismic Drift Limits for Glass Components
C13.6 MECHANICAL AND ELECTRICAL COMPONENTS <\/td>\n<\/tr>\n
360<\/td>\nC13.6.1 General <\/td>\n<\/tr>\n
361<\/td>\nC13.6.2 Component Period
C13.6.3 Mechanical Components and C13.6.4 Electrical Components <\/td>\n<\/tr>\n
362<\/td>\nC13.6.5 Component Supports
C13.6.5.1 Design Basis
C13.6.5.2 Design for Relative Displacement
C13.6.5.3 Support Attachment to Component <\/td>\n<\/tr>\n
363<\/td>\nC13.6.5.5 Additional Requirements
FIGURE C13.6-1 Equipment Anchorage with Belleville Washers
C13.6.5.6 Conduit, Cable Tray, and Other Electrical Distribution Systems (Raceways) <\/td>\n<\/tr>\n
364<\/td>\nC13.6.6 Utility and Service Lines
C13.6.7 Ductwork
C13.6.8 Piping Systems <\/td>\n<\/tr>\n
366<\/td>\nC13.6.8.1 ASME Pressure Piping Systems
C13.6.8.2 Fire Protection Sprinkler Piping Systems <\/td>\n<\/tr>\n
367<\/td>\nC13.6.8.3 Exceptions
C13.6.9 Boilers and Pressure Vessels
C13.6.10 Elevator and Escalator Design Requirements
C13.6.10.3 Seismic Controls for Elevators <\/td>\n<\/tr>\n
368<\/td>\nC13.6.10.4 Retainer Plates
C13.6.11 Other Mechanical and Electrical Components
REFERENCES <\/td>\n<\/tr>\n
371<\/td>\nCommentary to Chapter 14, Material-Specific Design and Detailing Requirements
C14.0 SCOPE
C14.1 STEEL
C14.1.1 Reference Documents
C14.1.2 Structural Steel
C14.1.2.1 General
C14.1.2.2 Seismic Requirements for Structural Steel Structures
C14.1.2.2.1 Seismic Design Categories B and C <\/td>\n<\/tr>\n
372<\/td>\nC14.1.2.2.2 Seismic Design Categories D through F
C14.1.3 Cold-Formed Steel
C14.1.3.1 General
C14.1.3.2 Seismic Requirements for Cold-Formed Steel Structures
C14.1.4 Cold-Formed Steel Light-Frame Construction
C14.1.4.1 General <\/td>\n<\/tr>\n
373<\/td>\nC14.1.4.2 Seismic Requirements for Cold-Formed Steel Light-Frame Construction
C14.1.4.3 Prescriptive Cold-Formed Steel Light-Frame Construction
C14.1.5 Steel Deck Diaphragms <\/td>\n<\/tr>\n
374<\/td>\nC14.1.6 Steel Cables
C14.1.7 Additional Detailing Requirements for Steel Piles in Seismic Design Categories D through F
C14.2 CONCRETE
C14.2.2.1 Definitions
C14.2.2.2 ACI 318, Section 7.10
C14.2.2.3 Scope
C14.2.2.4 Intermediate Precast Structural Walls <\/td>\n<\/tr>\n
375<\/td>\nC14.2.2.6 Foundations
C14.2.2.7 Detailed Plain Concrete Shear Walls
C14.2.3 Additional Detailing Requirements for Concrete Piles
C14.2.3.1.2 Reinforcement for Uncased Concrete Piles (SDC C)
C14.2.3.1.5 Reinforcement for Precast Nonprestressed Concrete Piles (SDC C) <\/td>\n<\/tr>\n
376<\/td>\nC14.2.3.1.6 Reinforcement for Precast Prestressed Piles (SDC C)
C14.2.3.2.3 Reinforcement for Uncased Concrete Piles (SDC D through F)
C14.2.3.2.5 Reinforcement for Precast Concrete Piles (SDC D through F)
C14.2.3.2.6 Reinforcement for Precast Prestressed Piles (SDC D through F)
C14.2.4 Additional Detailing Requirements for Precast Concrete Diaphragms <\/td>\n<\/tr>\n
377<\/td>\nC14.2.4.1 Diaphragm Seismic Demand Levels
FIGURE C14.2.4-1 Diaphragm Dimensions <\/td>\n<\/tr>\n
379<\/td>\nFIGURE C14.2.4-2 Diaphragm Shear Amplification Factor Results from NTHA at MCE: (a) BDO; (b) RDO
C14.2.4.2 Diaphragm Design Options <\/td>\n<\/tr>\n
381<\/td>\nFIGURE C14.2.4-3 Diaphragm Maximum Joint Opening in NTHA for Basic Design Option Designs Under the MCE
C14.2.4.3 Diaphragm Connector or Reinforcement Deformability <\/td>\n<\/tr>\n
382<\/td>\nC14.2.4.3.5 Special Inspection
C14.2.4.4 Precast Concrete Diaphragm Joint Connector and Reinforcement Qualification Procedure <\/td>\n<\/tr>\n
383<\/td>\nC14.2.4.4.1 Test Modules
Figure C14.2.4-2 Test Module
C14.2.4.4.3 Test Configuration
FIGURE C14.2.4-3 Possible Test Set-Up
C14.2.4.4.4 Instrumentation <\/td>\n<\/tr>\n
384<\/td>\nC14.2.4.4.5 Loading Protocols
FIGURE C14.2.4-4 Shear Loading Protocol
FIGURE C14.2.4-5 Tension\/Compression Loading Protocol <\/td>\n<\/tr>\n
385<\/td>\nC14.2.4.4.6 Measurement Indices
C14.2.4.4.7 Response Properties <\/td>\n<\/tr>\n
386<\/td>\nC14.2.4.4.8 Test Report
C14.2.4.4.9 Deformed Bar Reinforcement
C14.3 COMPOSITE STEEL AND CONCRETE STRUCTURES
C14.3.1 Reference Documents
C14.3.4 Metal-Cased Concrete Piles
C14.4 MASONRY <\/td>\n<\/tr>\n
387<\/td>\nC14.5 WOOD
C14.5.1 Reference Documents
REFERENCES <\/td>\n<\/tr>\n
391<\/td>\nCommentary to Chapter 15, Seismic Design Requirements for Nonbuilding Structures
C15.1 GENERAL
C15.1.1 Nonbuilding Structures
C15.1.2 Design
C15.1.3 Structural Analysis Procedure Selection <\/td>\n<\/tr>\n
394<\/td>\nC15.2 REFERENCE DOCUMENTS <\/td>\n<\/tr>\n
395<\/td>\nC15.3 NONBUILDING STRUCTURES SUPPORTED BY OTHER STRUCTURES
C15.3.1 Less than 25% Combined Weight Condition <\/td>\n<\/tr>\n
396<\/td>\nC15.3.2 Greater Than or Equal to 25% Combined Weight Condition
C15.4 STRUCTURAL DESIGN REQUIREMENTS <\/td>\n<\/tr>\n
397<\/td>\nC15.4.1 Design Basis <\/td>\n<\/tr>\n
398<\/td>\nC15.4.1.1 Importance Factor
C15.4.2 Rigid Nonbuilding Structures <\/td>\n<\/tr>\n
399<\/td>\nC15.4.3 Loads
C15.4.4 Fundamental Period
C15.4.8 Site-Specific Response Spectra
C15.4.9 Anchors in Concrete or Masonry
C15.5 NONBUILDING STRUCTURES SIMILAR TO BUILDINGS
C15.5.1 General
C15.5.2 Pipe Racks <\/td>\n<\/tr>\n
400<\/td>\nC15.5.3 Steel Storage Racks
C15.5.4 Electrical Power Generating Facilities
C15.5.5 Structural Towers for Tanks and Vessels
C15.5.6 Piers and Wharves <\/td>\n<\/tr>\n
402<\/td>\nC15.6 GENERAL REQUIREMENTS FOR NONBUILDING STRUCTURES NOT SIMILAR TO BUILDINGS
C15.6.1 Earth-Retaining Structures
C15.6.2 Stacks and Chimneys
C15.6.4 Special Hydraulic Structures
C15.6.5 Secondary Containment Systems <\/td>\n<\/tr>\n
403<\/td>\nC15.6.5.1 Freeboard
C15.6.6 Telecommunication Towers
C15.7 TANKS AND VESSELS
C15.7.1 General <\/td>\n<\/tr>\n
404<\/td>\nC15.7.2 Design Basis <\/td>\n<\/tr>\n
405<\/td>\nC15.7.3 Strength and Ductility <\/td>\n<\/tr>\n
406<\/td>\nC15.7.4 Flexibility of Piping Attachments
C15.7.5 Anchorage
C15.7.6 Ground-Supported Storage Tanks for Liquids
C15.7.6.1 General <\/td>\n<\/tr>\n
407<\/td>\nC15.7.6.1.1 Distribution of Hydrodynamic and Inertia Forces
C15.7.6.1.2 Sloshing <\/td>\n<\/tr>\n
408<\/td>\nC15.7.6.1.4 Internal Elements
C15.7.6.1.5 Sliding Resistance <\/td>\n<\/tr>\n
409<\/td>\nC15.7.6.1.6 Local Shear Transfer
C15.7.6.1.7 Pressure Stability
C15.7.6.1.8 Shell Support
C15.7.6.1.9 Repair, Alteration, or Reconstruction
C15.7.7 Water Storage and Water Treatment Tanks and Vessels
C15.7.7.3 Reinforced and Prestressed Concrete <\/td>\n<\/tr>\n
410<\/td>\nC15.7.8 Petrochemical and Industrial Tanks and Vessels Storing Liquids
C15.7.8.1 Welded Steel
C15.7.8.2 Bolted Steel
C15.7.9 Ground-Supported Storage Tanks for Granular Materials
C15.7.9.1 General <\/td>\n<\/tr>\n
412<\/td>\nC15.7.9.3.5 Combined Anchorage Systems
C15.7.10 Elevated Tanks and Vessels for Liquids and Granular Materials
C15.7.10.1 General
C15.7.10.4 Transfer of Lateral Forces into Support Tower
C15.7.10.5 Evaluation of Structures Sensitive to Buckling Failure <\/td>\n<\/tr>\n
416<\/td>\nC15.7.10.7 Concrete Pedestal (Composite) Tanks
C15.7.11 Boilers and Pressure Vessels
C15.7.12 Liquid and Gas Spheres
C15.7.13 Refrigerated Gas Liquid Storage Tanks and Vessels <\/td>\n<\/tr>\n
419<\/td>\nC15.7.14 Horizontal, Saddle-Supported Vessels for Liquid or Vapor Storage
REFERENCES <\/td>\n<\/tr>\n
421<\/td>\nCommentary to Chapter 16, Seismic Response History Procedures
C16.1 General Requirements
C16.1.1 Overview
C16.1.2 Collapse Safety Goals and Approaches to Demonstrate Appropriate Collapse Safety
C16.1.3 Framework of the Chapter 16 Response-History Procedure <\/td>\n<\/tr>\n
422<\/td>\nC16.1.4 Treatment of Minimum Base Shear
C16.1.5 Applicability
C16.2 Ground Motions <\/td>\n<\/tr>\n
423<\/td>\nC16.2.1 Level of Ground Motion
C16.2.2 Definition of the Target Response Spectrum <\/td>\n<\/tr>\n
424<\/td>\nFIGURE C16-1 Example Conditional Mean Spectra for the Palo Alto Site Anchored for 2% in 50-year Motion at T = 0.45s, 0.85s, 2.6s, and 5s. (NIST, 2011a)
C16.2.2.1 Method 1
C16.2.2.2 Method 2 <\/td>\n<\/tr>\n
425<\/td>\nC16.2.3 Ground Motions Selection
C16.2.3.1 Minimum Number of Ground Motions
C16.2.3.2 Components of Ground Motion
C16.2.3.3 Selection of Ground Motions <\/td>\n<\/tr>\n
427<\/td>\nC16.2.4 Ground Motion Scaling <\/td>\n<\/tr>\n
428<\/td>\nC16.2.4.1 Period Range for Scaling
C16.2.4.2 Scaling of Ground Motions <\/td>\n<\/tr>\n
429<\/td>\nFIGURE C16-2 Ground Motion Scaling for Example A, Showing (a) the Ground Motion Spectra for all 11 Motions and (b) an Example for the Loma Prieta, Gilroy Array #3 Motion
C16.2.4.3 Spectral Matching of Ground Motions
C16.2.5 Application of Ground Motions to the Structural Model
C16.2.5.1 Orientation of Ground Motions <\/td>\n<\/tr>\n
430<\/td>\nC16.2.5.2 Application of Input Ground Motion over Subterranean Levels <\/td>\n<\/tr>\n
431<\/td>\nC16.3 MODELING AND ANALYSIS
C16.3.1 System Modeling <\/td>\n<\/tr>\n
432<\/td>\nC16.3.2 Gravity Load
C16.3.3 P-Delta Effects
C16.3.4 Seismic Mass <\/td>\n<\/tr>\n
433<\/td>\nC16.3.5 Diaphragm Modeling
C16.3.6 Torsion <\/td>\n<\/tr>\n
434<\/td>\nC16.3.7 Stiffness of Elements Modeled with Elastic Properties
C16.3.8 Nonlinear Modeling <\/td>\n<\/tr>\n
435<\/td>\nC16.3.9 Damping
C16.3.10 Soil-Structure Interaction <\/td>\n<\/tr>\n
436<\/td>\nFIGURE C16-3 Illustration of the Method of Inputting Ground Motions into the Base of the Structural Model (Source NIST GCR 11-917-14 (NIST 2011))
C16.4 Analysis Results and Acceptance Criteria
C16.4.1 Global Acceptance Criteria
C16.4.1.1 Unacceptable Responses <\/td>\n<\/tr>\n
438<\/td>\nFIGURE C16-4 Collapse Fragilities for a Building with P[C|MCER] = 10% and \u03b2COL,RTR = 0.40 <\/td>\n<\/tr>\n
441<\/td>\nC16.4.1.2 Story Drift
C16.4.2 Element-Level Acceptance Criteria <\/td>\n<\/tr>\n
443<\/td>\nC16.4.2.1 Force-Controlled Actions
FIGURE C16-5 Illustration of Lognormal Distributions for Component Capacity and Component Demand (Normalized to an Average Capacity of 1.0); the Average Component Capacity is Calibrated to Achieve P[C|MCER] = 10% <\/td>\n<\/tr>\n
445<\/td>\nFIGURE C16-6 Expected Shear Strengths (in terms of Fe \/ Fn,e) for Reinforced Concrete Shear Walls, when Subjected to Various Levels of Flexural Ductility (from Wallace et al. 2013) <\/td>\n<\/tr>\n
447<\/td>\nFIGURE C16-7 Plan View of Sample Building Showing Arrangement of Concrete Shear Walls
FIGURE C16-8 Plan View of Sample Building Showing Components of a Reinforced Concrete Core Shear Wall <\/td>\n<\/tr>\n
448<\/td>\nC16.4.2.2 Deformation-Controlled Actions <\/td>\n<\/tr>\n
451<\/td>\nC16.4.2.3 Components of the Gravity System
C16.5 DESIGN REVIEW
REFERENCES <\/td>\n<\/tr>\n
453<\/td>\nCommentary to Chapter 17, Seismic Design Requirements for Seismically Isolated Structures
C17.1 GENERAL <\/td>\n<\/tr>\n
454<\/td>\nFIGURE C17.1 Idealized Force-Deflection Relationships for Isolation Systems (Stiffness Effects of Sacrificial Wind-Restraint Systems Not Shown for Clarity) <\/td>\n<\/tr>\n
455<\/td>\nC17.2 GENERAL DESIGN REQUIREMENTS <\/td>\n<\/tr>\n
456<\/td>\nC17.2.4 Isolation System
C17.2.4.1 Environmental Conditions
C17.2.4.2 Wind Forces
C17.2.4.3 Fire Resistance
C17.2.4.4 Lateral Restoring Force
C17.2.4.5 Displacement Restraint
C17.2.4.6 Vertical Load Stability <\/td>\n<\/tr>\n
457<\/td>\nC17.2.4.7 Overturning
C17.2.4.8 Inspection and Replacement
C17.2.4.9 Quality Control
C17.2.5 Structural System
C17.2.5.2 Building Separations
C17.2.5.4 Steel Ordinary Concentrically Braced Frames <\/td>\n<\/tr>\n
458<\/td>\nC17.2.6 Elements of Structures and Nonstructural Components <\/td>\n<\/tr>\n
459<\/td>\nFIGURE C17.2.6.1 Definitions of Static Residual Displacement Drm for a Bilinear Hysteretic System <\/td>\n<\/tr>\n
461<\/td>\nC17.2.8 Isolation System Properties
C17.2.8.2 Isolator Unit Nominal Properties <\/td>\n<\/tr>\n
462<\/td>\nFIGURE C17.2.8.3-1 Example of the Nominal Properties of a Bilinear Force Deflection System
C17.2.8.3 Bounding Properties of Isolation System Components <\/td>\n<\/tr>\n
463<\/td>\nC17.2.8.4 Property Modification (\u03bb) Factors <\/td>\n<\/tr>\n
465<\/td>\nC17.2.8.5 Upper-Bound and Lower Bound Lateral Force-Displacement Behavior of Isolation System Components <\/td>\n<\/tr>\n
466<\/td>\nFIGURE C17.2.8.3-2 Example of the Upper and Lower Bound Properties of a Bilinear Force Deflection System
C17.3 GROUND MOTION FOR ISOLATED SYSTEMS
C17.3.1 Site-Specific Seismic Hazard
C17.3.2 MCER Spectral Response Acceleration Parameters, SMS, SM1
C17.3.3 MCER Response Spectrum
C17.3.4 MCER Ground Motion Records
C17.4 ANALYSIS PROCEDURE SELECTION <\/td>\n<\/tr>\n
467<\/td>\nC17.5 EQUIVALENT LATERAL FORCE PROCEDURE <\/td>\n<\/tr>\n
468<\/td>\nC17.5.3 Minimum Lateral Displacements
C17.5.3.1 Maximum MCER Displacements
C17.5.3.2 Effective Period at the Maximum MCER Displacement
C17.5.3.5 Total Maximum MCER Displacement <\/td>\n<\/tr>\n
469<\/td>\nFIGURE C17.5-2 Displacement Terminology
C17.5.4 Minimum Lateral Forces
FIGURE C17.5 Isolation System Terminology <\/td>\n<\/tr>\n
470<\/td>\nFIGURE 17.5-1 Example Nominal, Upper-Bound and Lower-Bound Bilinear Hysteretic Properties of Typical Isolator Bearing <\/td>\n<\/tr>\n
471<\/td>\nC17.5.4.1 Isolation System and Structural Elements below the Base Level
C17.5.4.2 Structural Elements above the Base Level <\/td>\n<\/tr>\n
472<\/td>\nC17.5.4.3 Limits on Vs
C17.5.5 Vertical Distribution of Force <\/td>\n<\/tr>\n
474<\/td>\nFIGURE C17.5-4a \u201cStrongly Bilinear\u201d Example Isolation System Example Loop
FIGURE C17.5-4b \u201cWeakly Bilinear\u201d Example Isolation System Example Loop <\/td>\n<\/tr>\n
475<\/td>\nC17.5.6 Drift Limits
C17.6 DYNAMIC ANALYSIS PROCEDURES <\/td>\n<\/tr>\n
477<\/td>\nC17.7 DESIGN REVIEW
C17.8 TESTING
C17.8.2.2 Sequence and Cycles <\/td>\n<\/tr>\n
478<\/td>\nC17.8.2.3 Units Dependent on Loading Rates <\/td>\n<\/tr>\n
479<\/td>\nC17.8.2.4 Units Dependent on Bilateral Load
C17.8.2.5 Maximum and Minimum Vertical Load
C17.8.2.7 Testing Similar Units <\/td>\n<\/tr>\n
480<\/td>\nC17.8.3 Determination of Force-Deflection Characteristics <\/td>\n<\/tr>\n
481<\/td>\nC17.8.4 Determination of Isolator Unit Test Properties for Design <\/td>\n<\/tr>\n
482<\/td>\nC17.8.6 Production Tests
REFERENCES <\/td>\n<\/tr>\n
485<\/td>\nCommentary to Chapter 18, Seismic Design requirements for Structures with Damping Systems
C18.1 GENERAL
FIGURE C18.1-1 Damping System (DS) and Seismic Force-Resisting System (SFRS) Configurations
C18.2 GENERAL DESIGN REQUIREMENTS
C18.2.1 System Requirements <\/td>\n<\/tr>\n
486<\/td>\nC18.2.1.2 Damping System
C18.2.2 Seismic Ground Motion Criteria
C18.2.3 Procedure Selection <\/td>\n<\/tr>\n
487<\/td>\nC18.2.4.1 Device Design <\/td>\n<\/tr>\n
489<\/td>\nC18.2.4.4 Nominal Design Properties
C18.2.4.5 Maximum and Minimum Damper Properties <\/td>\n<\/tr>\n
491<\/td>\nFIGURE C18.2-1 Force-Velocity Relationship for a Nonlinear Viscous Damper
C18.2.4.6 Damping System Redundancy <\/td>\n<\/tr>\n
492<\/td>\nC18.3 NONLINEAR PROCEDURES
C18.3.2 Accidental Mass Eccentricity <\/td>\n<\/tr>\n
493<\/td>\nC18.4 SEISMIC LOAD CONDITIONS AND ACCEPTANCE CRITERIA FOR NONLINEAR RESPONSE-HISTORY PROCEDURE
C18.4.1 Seismic Force Resisting System <\/td>\n<\/tr>\n
494<\/td>\nC18.5 DESIGN REVIEW
C18.6 TESTING
C18.6.1.2 Sequence and Cycles of Testing
C18.6.1.3 Testing Similar Devices
C18.6.2 Production Testing <\/td>\n<\/tr>\n
495<\/td>\nC18.7 ALTERNATE PROCEDURES AND CORRESPONdING ACCEPTANCE CRITERIA
C18.7.1 Response-Spectrum Procedure and C18.7.2 Equivalent Lateral Force Procedure
FIGURE C18.7-1 Effective Damping Reduction of Design Demand <\/td>\n<\/tr>\n
496<\/td>\nFIGURE C18.7-2 Pushover and Capacity Curves <\/td>\n<\/tr>\n
497<\/td>\nFIGURE C18.7-3 Pushover and Capacity Curves
C18.7.3 Damped Response Modification
C18.7.3.1 Damping Coefficient <\/td>\n<\/tr>\n
498<\/td>\nC18.7.3.2 Effective Damping
C18.7.4.5 Seismic Load Conditions and Combination of Modal Responses
REFERENCES <\/td>\n<\/tr>\n
501<\/td>\nCommentary to Chapter 19, Soil-Structure Interaction for Seismic Design
C19.1 GENERAL <\/td>\n<\/tr>\n
502<\/td>\nC19.2 SSI Adjusted Structural Demands <\/td>\n<\/tr>\n
504<\/td>\nC19.3 Foundation Damping <\/td>\n<\/tr>\n
507<\/td>\nC19.4 Kinematic Interaction Effects
C19.4.1 Base Slab Averaging
FIGURE C19.4-1 Example Base-Slab Averaging Response Spectra Ratios <\/td>\n<\/tr>\n
508<\/td>\nC19.4.2 Embedment
REFERENCES <\/td>\n<\/tr>\n
511<\/td>\nCommentary to Chapter 20, Site Classification Procedure for Seismic Design
C20.1 SITE CLASSIFICATION
C20.3 SITE CLASS DEFINITIONS
C20.3.1 Site Class F <\/td>\n<\/tr>\n
513<\/td>\nCommentary to Chapter 21, Site-Specific Ground Motion Procedures for Seismic Design
C21.0 GENERAL <\/td>\n<\/tr>\n
514<\/td>\nC21.1 SITE RESPONSE ANALYSIS
C21.1.1 Base Ground Motions
C21.1.2 Site Condition Modeling <\/td>\n<\/tr>\n
515<\/td>\nC21.1.3 Site Response Analysis and Computed Results
C21.2 RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCER) GROUND MOTION HAZARD ANALYSIS
C21.2.1 Probabilistic (MCER) Ground Motions <\/td>\n<\/tr>\n
516<\/td>\nC21.2.1.1 Method 1
C21.2.1.2 Method 2
C21.2.2 Deterministic (MCER) Ground Motions
C21.2.3 Site-Specific MCER
C21.3 DESIGN RESPONSE SPECTRUM <\/td>\n<\/tr>\n
517<\/td>\nC21.4 DESIGN ACCELERATION PARAMETERS
C21.5 MAXIMUM CONSIDERED EARTHQUAKE GEOMETRIC MEAN (MCEG) PEAK GROUND ACCELERATION <\/td>\n<\/tr>\n
518<\/td>\nREFERENCES <\/td>\n<\/tr>\n
521<\/td>\nCommentary to Chapter 22, Seismic Ground Motion, Long-Period Transition and Risk Coefficient Maps <\/td>\n<\/tr>\n
529<\/td>\nRISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCER) GROUND MOTION MAPS <\/td>\n<\/tr>\n
530<\/td>\nMAXIMUM CONSIDERED EARTHQUAKE GEOMETRIC MEAN (MCEG) PGA MAPS
LONG-PERIOD TRANSITION MAPS <\/td>\n<\/tr>\n
531<\/td>\nRISK COEFFICIENT MAPS <\/td>\n<\/tr>\n
532<\/td>\nGROUND MOTIONS WEB TOOL
UNIFORM-HAZARD AND DETERMINISTIC GROUND MOTION MAPS
REFERENCES <\/td>\n<\/tr>\n
535<\/td>\nCommentary to Chapter 23A, Vertical Ground Motions for Seismic Design
C23.1 DESIGN VERTICAL RESPONSE SPECTRUM
C23.1.1 General
C23.1.2 General Design Procedure <\/td>\n<\/tr>\n
536<\/td>\nC23.1.3 Detailed Design Procedure <\/td>\n<\/tr>\n
537<\/td>\nC23.1.4 Limits Imposed on Sav
FIGURE C23.1-1 Illustrative Example of the Design Vertical Response Spectrum
REFERENCES <\/td>\n<\/tr>\n
539<\/td>\nCommentary to Chapter 24, ALternative Seismic Design Requirements for Seismic Design Category B Buildings
C24.1 General
C24.2 Structural Design Basis
C24.3 Structural System Selection <\/td>\n<\/tr>\n
540<\/td>\nC24.4 Diaphragm Flexibility and Configuration Irregularities
C24.5 Seismic Load Effects and Combinations
C24.6 Direction of Loading
C24.7 Analysis Procedure Selection
C24.8 Modeling Criteria <\/td>\n<\/tr>\n
541<\/td>\nC24.9 Equivalent Lateral Force Procedure
C24.9.1 Seismic Base Shear
C24.9.2 Period Determination
C24.9.4.2 Accidental Torsion
C24.10 Modal Response Spectrum Analysis
C24.11 Diaphragms, Chords and Collectors <\/td>\n<\/tr>\n
542<\/td>\nC24.13 Drift and Deformation
C24.14 Foundation Design
C24.15 Seismic Design Requirements for Egress Stairways and Parapets
C24.15.2 General Design Requirements
C24.15.3 Seismic Design Force
C24.15.4 Design of Egress Stairways for Seismic Relative Displacements
References <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

FEMA P-1050-1, NEHRP Provisions Volume I: Part 1 Provisions, Part 2 Commentary<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
FEMA<\/b><\/a><\/td>\n2015<\/td>\n555<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":166924,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2743],"product_tag":[],"class_list":{"0":"post-166923","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-fema","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/166923","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/166924"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=166923"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=166923"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=166923"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}