{"id":239427,"date":"2024-10-19T15:39:39","date_gmt":"2024-10-19T15:39:39","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-ts-62282-7-12017\/"},"modified":"2024-10-25T10:21:50","modified_gmt":"2024-10-25T10:21:50","slug":"bsi-pd-iec-ts-62282-7-12017","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-ts-62282-7-12017\/","title":{"rendered":"BSI PD IEC\/TS 62282-7-1:2017"},"content":{"rendered":"

This document covers cell assemblies, test station setup, measuring instruments and measuring methods, performance test methods, and test reports for PEFC single cells.<\/p>\n

This document is used for evaluating:<\/p>\n

    \n
  1. \n

    the performance of membrane electrode assemblies (MEAs) for PEFCs in a single cell configuration;<\/p>\n<\/li>\n

  2. \n

    materials or structures of PEFCs in a single cell configuration; or,<\/p>\n<\/li>\n

  3. \n

    the influence of impurities in fuel and\/or in air on the fuel cell performance.<\/p>\n<\/li>\n<\/ol>\n

    PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
    PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
    4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
    9<\/td>\nFOREWORD <\/td>\n<\/tr>\n
    11<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
    12<\/td>\n1 Scope
    2 Normative references
    3 Terms and definitions <\/td>\n<\/tr>\n
    16<\/td>\n4 General safety considerations
    5 Cell components
    5.1 General
    5.2 Membrane electrode assembly (MEA)
    5.3 Gasket
    5.4 Flow plate <\/td>\n<\/tr>\n
    17<\/td>\n5.5 Current collector
    5.6 Clamping plate (or pressure plate)
    5.7 Clamping hardware
    5.8 Temperature-control device <\/td>\n<\/tr>\n
    18<\/td>\n6 Cell assembly
    6.1 Assembly procedure
    6.2 Cell orientation and gas connections
    6.3 Leak check
    7 Test station setup
    7.1 Minimum equipment requirement <\/td>\n<\/tr>\n
    19<\/td>\n7.2 Schematic diagram
    Figures
    Figure 1 \u2013 Test station schematic diagram for single cell testing <\/td>\n<\/tr>\n
    20<\/td>\n7.3 Maximum variation in test station controls (inputs to test)
    8 Measuring instruments
    8.1 Instrument uncertainty
    8.2 Measuring instruments and measuring methods
    8.2.1 General
    8.2.2 Voltage
    8.2.3 Current <\/td>\n<\/tr>\n
    21<\/td>\n8.2.4 Internal resistance (IR)
    8.2.5 Fuel and oxidant flow rates
    8.2.6 Fuel and oxidant temperature
    8.2.7 Cell temperature
    8.2.8 Fuel and oxidant pressures <\/td>\n<\/tr>\n
    22<\/td>\n8.2.9 Fuel and oxidant humidity
    8.2.10 Ambient conditions
    8.3 Measurement units <\/td>\n<\/tr>\n
    23<\/td>\n9 Gas composition
    9.1 Fuel composition
    9.1.1 Hydrogen
    9.1.2 Reformed gases
    9.2 Oxidant composition
    10 Test preparation
    10.1 Standard test conditions
    Tables
    Table 1 \u2013 Parameters and units <\/td>\n<\/tr>\n
    24<\/td>\n10.2 Ambient conditions
    10.3 Data sampling rate
    10.4 Repeatability and reproducibility
    10.5 Number of test samples
    Figure 2 \u2013 Typical testing flowchart <\/td>\n<\/tr>\n
    25<\/td>\n10.6 Leak check of gas circuit with inert or test gas
    10.7 Initial conditioning and stable state check
    10.8 Shutdown
    10.9 Reconditioning
    11 Basic performance test methods
    11.1 General <\/td>\n<\/tr>\n
    26<\/td>\n11.2 Polarization curve tests
    11.2.1 General
    11.2.2 Polarization curves at constant gas stoichiometries <\/td>\n<\/tr>\n
    27<\/td>\n11.2.3 Polarization curves at constant flow rate
    11.3 Steady-state test
    11.3.1 General
    11.3.2 Test methods <\/td>\n<\/tr>\n
    28<\/td>\n11.4 Long-term operation test
    11.4.1 General
    11.4.2 Test method
    11.5 Voltammetry
    11.5.1 General <\/td>\n<\/tr>\n
    29<\/td>\n11.5.2 Hydrogen crossover test <\/td>\n<\/tr>\n
    30<\/td>\n11.5.3 Electrochemical surface area (ECA) measurement
    Figure 3 \u2013 Hydrogen crossover test <\/td>\n<\/tr>\n
    31<\/td>\nFigure 4 \u2013 Determination of adsorption\/desorption charge (qh) <\/td>\n<\/tr>\n
    32<\/td>\n11.6 Internal resistance (IR) measurement
    11.6.1 General
    Figure 5 \u2013 Determination of CO desorption charge (qco) <\/td>\n<\/tr>\n
    33<\/td>\n11.6.2 Test methods
    Figure 6 \u2013 Measurement of \u0394VCI <\/td>\n<\/tr>\n
    34<\/td>\n11.7 Electrochemical impedance spectroscopy (EIS)
    11.7.1 General
    11.7.2 Test conditions
    11.7.3 Test method <\/td>\n<\/tr>\n
    35<\/td>\n11.7.5 IR measurement by EIS
    12 Applied performance test methods
    Figure 7 \u2013 Typical diagram of a complex impedance plot <\/td>\n<\/tr>\n
    36<\/td>\nTable 2 \u2013 Applied performance tests <\/td>\n<\/tr>\n
    37<\/td>\n13 Test report
    13.1 General
    13.2 Report items
    13.3 Test data description <\/td>\n<\/tr>\n
    38<\/td>\n13.4 Description of measurement conditions
    13.5 Test cell parameter description <\/td>\n<\/tr>\n
    39<\/td>\nAnnex\u00a0A (informative)Flow plate <\/td>\n<\/tr>\n
    40<\/td>\nFigure A.1 \u2013 Design for flow plate (single-serpentine flow channel)
    Figure A.2 \u2013 Design for flow plate (triple-serpentine flow channel) <\/td>\n<\/tr>\n
    41<\/td>\nAnnex\u00a0B (informative)Cell component alignment
    Figure B.1 \u2013 Single cell assembly using typical components <\/td>\n<\/tr>\n
    42<\/td>\nAnnex\u00a0C (informative)Leak test
    C.1 Purpose
    C.2 Test procedures <\/td>\n<\/tr>\n
    44<\/td>\nAnnex\u00a0D (informative)Initial conditioning <\/td>\n<\/tr>\n
    45<\/td>\nAnnex\u00a0E (informative)Shutdown <\/td>\n<\/tr>\n
    46<\/td>\nAnnex\u00a0F (informative)Reconditioning protocols <\/td>\n<\/tr>\n
    47<\/td>\nAnnex\u00a0G (informative)Polarization curve test supplement
    Table G.1 \u2013 Current density increments if maximum current density is known <\/td>\n<\/tr>\n
    48<\/td>\nTable G.2 \u2013 Current density increments if maximum current density is unknown <\/td>\n<\/tr>\n
    49<\/td>\nAnnex\u00a0H (normative)Applied performance tests
    H.1 Gain tests
    H.1.1 Hydrogen gain test
    H.1.2 Oxygen gain test <\/td>\n<\/tr>\n
    50<\/td>\nH.2 Gas stoichiometry tests
    H.2.1 Fuel stoichiometry test
    H.2.2 Oxidant stoichiometry test <\/td>\n<\/tr>\n
    51<\/td>\nH.3 Temperature effect test
    H.3.1 General
    H.3.2 Test method
    H.4 Pressure effect test
    H.4.1 General
    H.4.2 Test method
    H.5 Humidity effect tests
    H.5.1 Fuel humidity effect test <\/td>\n<\/tr>\n
    52<\/td>\nH.5.2 Oxidant humidity effect test
    H.6 Limiting current test
    H.6.1 General
    H.6.2 Test method <\/td>\n<\/tr>\n
    53<\/td>\nH.7 Overload test
    H.7.1 General
    H.7.2 Test method
    H.8 Subzero storage test
    H.8.1 General
    H.8.2 Test method <\/td>\n<\/tr>\n
    54<\/td>\nH.9 Subzero start test
    H.9.1 General
    H.9.2 Test method
    H.10 Membrane swelling test (humidity cycle test)
    H.10.1 General <\/td>\n<\/tr>\n
    55<\/td>\nH.10.2 Test conditions
    H.10.3 Test method
    H.11 Open circuit voltage (OCV) test
    H.11.1 General
    H.11.2 Test conditions <\/td>\n<\/tr>\n
    56<\/td>\nH.11.3 Test method
    H.12 Oxygen reduction reaction (ORR) activity test
    H.12.1 General
    H.12.2 Test conditions
    H.12.3 Test method <\/td>\n<\/tr>\n
    57<\/td>\nFigure H.1 \u2013 ORR activity test procedure <\/td>\n<\/tr>\n
    58<\/td>\nH.13 Fuel composition test
    H.13.1 General
    H.13.2 Test method
    H.14 Cycling tests
    H.14.1 Start\/stop cycling test
    Figure H.2 \u2013 Example of Tafel plot <\/td>\n<\/tr>\n
    59<\/td>\nH.14.2 Load cycling test
    H.14.3 Potential cycle test (start\/stop durability) <\/td>\n<\/tr>\n
    60<\/td>\nH.14.4 Potential cycle test (load cycle durability)
    Figure H.3 \u2013 Potential cycle test (start\/stop durability) procedure <\/td>\n<\/tr>\n
    61<\/td>\nH.15 Impurity influence tests
    H.15.1 Influence at rated current density
    Figure H.4 \u2013 Potential cycle test (load cycle durability) procedure <\/td>\n<\/tr>\n
    62<\/td>\nH.15.2 Influence on polarization curves <\/td>\n<\/tr>\n
    63<\/td>\nH.15.3 Long-term impurity influence test <\/td>\n<\/tr>\n
    64<\/td>\nAnnex\u00a0I (informative)Test report for polarization curve tests
    I.1 General
    I.2 General information
    I.2.1 General information on the test report
    I.2.2 General information concerning the test
    I.3 Introductory remarks
    I.4 Objective and scope of the test <\/td>\n<\/tr>\n
    65<\/td>\nI.5 Description of cell components
    I.6 Background <\/td>\n<\/tr>\n
    66<\/td>\nI.7 Description of the test setup
    I.8 Description of operating conditions, inputs and outputs <\/td>\n<\/tr>\n
    67<\/td>\nTable I.1 \u2013 Test input parameters <\/td>\n<\/tr>\n
    68<\/td>\nI.9 Test procedure and results
    I.9.1 Description of startup and conditioning
    I.9.2 Description of shutdown (when relevant)
    I.9.3 Description of measurement and results
    Table I.2 \u2013 Test output parameters
    Table I.3 \u2013 Cell performance during startup and conditioning <\/td>\n<\/tr>\n
    69<\/td>\nI.9.4 Deviation from test procedures
    I.10 Data post-processing
    I.11 Conclusion and acceptance criteria
    Table I.4 \u2013 Cell performance during test <\/td>\n<\/tr>\n
    70<\/td>\nAnnex\u00a0J (informative)Polarization curves in helox
    Figure J.1 \u2013 Illustration of losses identified by comparison of polarization curves in oxygen, helox and air <\/td>\n<\/tr>\n
    71<\/td>\nAnnex\u00a0K (informative)Test report for subzero start test
    Table K.1 \u2013 Energy consumption, gas consumption and heat balance data during subzero startup
    Table K.2 \u2013 Cell characteristics comparison before and after subzero testing <\/td>\n<\/tr>\n
    72<\/td>\nAnnex\u00a0L (informative) Start\/stop cycling test supplement <\/td>\n<\/tr>\n
    73<\/td>\nAnnex\u00a0M (informative)Load cycling test supplement
    Figure M.1 \u2013 Dynamic load cycling profile.
    Figure M.2 \u2013 Second dynamic load cycling profile <\/td>\n<\/tr>\n
    74<\/td>\nFigure M.3 \u2013 Dynamic load cycling based on road vehicle driving <\/td>\n<\/tr>\n
    75<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

    Fuel cell technologies – Test methods. Single cell performance tests for polymer electrolyte fuel cells (PEFC)<\/b><\/p>\n\n\n\n\n
    Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
    BSI<\/b><\/a><\/td>\n2017<\/td>\n78<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":239431,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2641],"product_tag":[],"class_list":{"0":"post-239427","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-bsi","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/239427","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/239431"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=239427"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=239427"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=239427"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}