{"id":381904,"date":"2024-10-20T03:13:39","date_gmt":"2024-10-20T03:13:39","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-cen-clc-tr-17603-31-132021\/"},"modified":"2024-10-26T05:51:48","modified_gmt":"2024-10-26T05:51:48","slug":"bsi-pd-cen-clc-tr-17603-31-132021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-cen-clc-tr-17603-31-132021\/","title":{"rendered":"BSI PD CEN\/CLC\/TR 17603-31-13:2021"},"content":{"rendered":"
Fluid loops are used to control the temperature of sensitive components in spacecraft systems in order to ensure that they can function correctly.<\/p>\n
While there are several methods for thermal control (such as passive thermal insulations, thermoelectric devices, phase change materials, heat pipes and short-term discharge systems), fluid loops have a specific application area.<\/p>\n
This Part 13 provides a detailed description of fluid loop systems for use in spacecraft.<\/p>\n
The Thermal design handbook is published in 16 Parts<\/p>\n
TR 17603-31-01 Thermal design handbook \u2013 Part 1: View factors<\/p>\n
TR 17603-31-02 Thermal design handbook \u2013 Part 2: Holes, Grooves and Cavities<\/p>\n
TR 17603-31-03 Thermal design handbook \u2013 Part 3: Spacecraft Surface Temperature<\/p>\n
TR 17603-31-04 Thermal design handbook \u2013 Part 4: Conductive Heat Transfer<\/p>\n
TR 17603-31-05 Thermal design handbook \u2013 Part 5: Structural Materials: Metallic and Composite<\/p>\n
TR 17603-31-06 Thermal design handbook \u2013 Part 6: Thermal Control Surfaces<\/p>\n
TR 17603-31-07 Thermal design handbook \u2013 Part 7: Insulations<\/p>\n
TR 17603-31-08 Thermal design handbook \u2013 Part 8: Heat Pipes<\/p>\n
TR 17603-31-09 Thermal design handbook \u2013 Part 9: Radiators<\/p>\n
TR 17603-31-10 Thermal design handbook \u2013 Part 10: Phase \u2013 Change Capacitors<\/p>\n
TR 17603-31-11 Thermal design handbook \u2013 Part 11: Electrical Heating<\/p>\n
TR 17603-31-12 Thermal design handbook \u2013 Part 12: Louvers<\/p>\n
TR 17603-31-13 Thermal design handbook \u2013 Part 13: Fluid Loops<\/p>\n
TR 17603-31-14 Thermal design handbook \u2013 Part 14: Cryogenic Cooling<\/p>\n
TR 17603-31-15 Thermal design handbook \u2013 Part 15: Existing Satellites<\/p>\n
TR 17603-31-16 Thermal design handbook \u2013 Part 16: Thermal Protection System<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 2 References <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 3 Terms, definitions and symbols 3.1 Terms and definitions 3.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 3.3 Symbols <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 4 General introduction <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 4.1 Fluid loops <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 4.2 Comparison between fluid loops and alternative systems 4.2.1 Passive thermal insulations 4.2.2 Thermoelectric devices <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 4.2.3 Phase change materials (pcm) <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 4.2.4 Heat pipes 4.2.5 Short-term discharge systems <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 5 Analysis of a fluid loop 5.1 General <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 5.2 Thermal performance <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 5.3 Power requirements <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 6 Thermal analysis 6.1 General 6.2 Analytical background 6.2.1 Heat transfer coefficient <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 6.2.2 Dimensionless groups <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 6.2.3 Simplifying assumptions 6.2.4 Temperature-dependence of fluid properties <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 6.2.5 Laminar versus turbulent fluid flow 6.2.6 Heat transfer to internal flows <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 6.2.7 Heat transfer to external flows <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 6.3 Thermal performance data 6.3.1 Heat transfer to internal flow <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 6.3.1.1 Laminar flow <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 6.3.1.2 Transitional flow <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 6.3.1.3 Turbulent flow <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 6.3.2 Heat transfer to external flows <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 6.3.2.1 Cylindrical bodies <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 6.3.2.2 Tube banks <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 7 Frictional analysis 7.1 General 7.2 Analytical background 7.2.1 Introduction <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 7.2.2 Fully developed flow in straight pipes <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | 7.2.2.1 Power-law approximations for the hydraulically smooth regime 7.2.3 Temperature-dependence of fluid properties <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 7.2.4 Several definitions of pressure loss coefficient <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 7.2.5 Entrance effects <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 7.2.6 Interferences and networks <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 7.2.7 Flow chart <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 7.3 Pressure loss data 7.3.1 Straight pipes <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 7.3.2 Bends <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 7.3.3 Sudden changes of area <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | 7.3.4 Orifices and diaphragms <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | 7.3.5 Screens <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 7.3.6 Valves <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 7.3.7 Tube banks <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | 7.3.8 Branching of tubes <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 8 Combined thermal and frictional analysis 8.1 General 8.2 Analogies between momentum and heat transfer 8.2.1 The Reynolds analogy <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | 8.2.2 The Prandtl analogy <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 8.2.3 The Von Karman analogy 8.2.4 Other analogies <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 9 Heat transfer enhancement 9.1 General <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | 9.1.1 Basic augmentation mechanisms <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 9.1.2 Criterion for the evaluation of the several techniques <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 9.1.3 Index of the compiled data. 9.1.4 Validity of the empirical correlations <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 9.2 Single-phase forced convection data <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | 10 Working fluids 10.1 General 10.2 Cooling effectiveness of a fluid <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 10.2.1 Simplified fluid loop configuration 10.2.2 Thermal performance of the simplified loop <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 10.2.3 Power requirements of the simplified loop 10.2.4 Several examples <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | 10.3 Properties of liquid coolants <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | 10.4 Properties of dry air <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | 11 Heat exchangers 11.1 General <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | 11.2 Basic analysis 11.2.1 Introduction <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 11.2.2 Analytical background <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | 11.2.3 Exchanger performance <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | 11.3 Exchanging surface geometries <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | 11.3.1 Tubular surfaces <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | 11.3.2 Plate-fin surfaces <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | 11.3.3 Finned tubes <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | 11.3.4 Matrix surfaces <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | 11.4 Deviations from basic analysis 11.4.1 Introduction <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | 11.4.2 Longitudinal heat conduction <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | 11.4.3 Flow maldistribution 11.4.3.1 Simple analyses <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | 11.4.3.2 Maldistribution compensating techniques in shell-and-tube heat exchangers <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | 11.4.3.3 Maldistribution compensating techniques in parallel counterflow heat exchangers <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | 11.5 Manufacturing defects 11.5.1 Introduction 11.5.2 Variations of the flow passages <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | 11.5.3 Fin leading edge imperfections 11.5.4 Brazing <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | 11.6 In service degradation 11.6.1 Introduction 11.6.2 Fouling <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | 11.7 Existing systems <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | 12 Pumps 12.1 General <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | 12.2 Specified speed <\/td>\n<\/tr>\n | ||||||
291<\/td>\n | 12.3 Net suction energy <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | 12.4 Requirements for spaceborne pumps <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | 12.5 Commercially available pumps <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | 12.6 European pump manufacturers <\/td>\n<\/tr>\n | ||||||
300<\/td>\n | 13 System optimization 13.1 General 13.2 Basic analysis <\/td>\n<\/tr>\n | ||||||
301<\/td>\n | 13.2.1 Interface heat exchanger <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | 13.2.2 Supply and return plumbing <\/td>\n<\/tr>\n | ||||||
303<\/td>\n | 13.2.3 Radiator 13.3 Special examples <\/td>\n<\/tr>\n | ||||||
304<\/td>\n | 13.3.1 Constraints based on source temperature <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | 13.3.2 Constraints imposed by the integration <\/td>\n<\/tr>\n | ||||||
311<\/td>\n | 14 Two-phase flow 14.1 General <\/td>\n<\/tr>\n | ||||||
313<\/td>\n | 14.2 Pressure loss 14.2.1 Lockhart-martinelli correlation <\/td>\n<\/tr>\n | ||||||
318<\/td>\n | 14.2.2 Improvements upon martinelli correlation <\/td>\n<\/tr>\n | ||||||
319<\/td>\n | 14.3 Annular flow <\/td>\n<\/tr>\n | ||||||
320<\/td>\n | 14.3.1 Ideal annular flow model 14.3.1.1 Mass preservation equation for either phase 14.3.1.2 Axial momentum equation for either phase <\/td>\n<\/tr>\n | ||||||
321<\/td>\n | 14.3.1.3 Pressure loss vs. friction factors fl and fgi <\/td>\n<\/tr>\n | ||||||
322<\/td>\n | 14.3.1.4 Laws of friction for fl and fgi <\/td>\n<\/tr>\n | ||||||
324<\/td>\n | 14.3.1.5 Expressions in terms of martinelli parameters <\/td>\n<\/tr>\n | ||||||
326<\/td>\n | 14.3.1.6 Summary <\/td>\n<\/tr>\n | ||||||
328<\/td>\n | 14.3.1.7 Worked example <\/td>\n<\/tr>\n | ||||||
329<\/td>\n | 14.3.2 Annular flow with entrainment model 14.3.2.1 Mass preservation equation for either phase <\/td>\n<\/tr>\n | ||||||
330<\/td>\n | 14.3.2.2 Axial momentum equation for either phase 14.3.2.3 Pressure loss vs. friction factors ffand fgi <\/td>\n<\/tr>\n | ||||||
331<\/td>\n | 14.3.2.4 Laws of friction for ff and fgi* <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | 14.3.2.5 Expressions in terms of martinelli parameters <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | 14.3.2.6 Additional data on entrainment <\/td>\n<\/tr>\n | ||||||
335<\/td>\n | 14.3.2.7 Summary <\/td>\n<\/tr>\n | ||||||
337<\/td>\n | 14.3.2.8 Worked example <\/td>\n<\/tr>\n | ||||||
341<\/td>\n | 14.3.2.9 The ideal annular and the annular with entrainment models <\/td>\n<\/tr>\n | ||||||
343<\/td>\n | 14.4 Condensation in ducts 14.4.1 Condensing flow model <\/td>\n<\/tr>\n | ||||||
345<\/td>\n | 14.4.1.2 Static pressure loss <\/td>\n<\/tr>\n | ||||||
346<\/td>\n | 14.4.1.3 Friction terms <\/td>\n<\/tr>\n | ||||||
347<\/td>\n | 14.4.1.4 Momentum equation <\/td>\n<\/tr>\n | ||||||
348<\/td>\n | 14.4.1.5 Dimensionless energy equation <\/td>\n<\/tr>\n | ||||||
349<\/td>\n | 14.4.2 Variation of the vapor quality along the duct in the stratified model <\/td>\n<\/tr>\n | ||||||
351<\/td>\n | 14.4.3 Limits of validity of the stratified model <\/td>\n<\/tr>\n | ||||||
352<\/td>\n | 14.4.4 Annular flow model <\/td>\n<\/tr>\n | ||||||
353<\/td>\n | 14.4.4.1 Heat transfer coefficient in annular flow <\/td>\n<\/tr>\n | ||||||
356<\/td>\n | 14.4.5 Variation of the vapor quality along the duct in the annular model <\/td>\n<\/tr>\n | ||||||
359<\/td>\n | 15 Two-phase thermal transport systems 15.1 General 15.1.1 Evolution of thermal transport systems <\/td>\n<\/tr>\n | ||||||
360<\/td>\n | 15.1.2 Two-phase loop general layout <\/td>\n<\/tr>\n | ||||||
363<\/td>\n | 15.1.3 About the nomenclature of this clause 15.2 Tms trade-off study <\/td>\n<\/tr>\n | ||||||
366<\/td>\n | 15.2.1 TMS study baseline 15.2.2 TMS design concepts <\/td>\n<\/tr>\n | ||||||
369<\/td>\n | 15.2.3 Evaluation of tms concepts <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | 15.3 Design for orbital average load 15.3.1 Phase change capacitor performance <\/td>\n<\/tr>\n | ||||||
378<\/td>\n | 15.4 Off-design operation <\/td>\n<\/tr>\n | ||||||
380<\/td>\n | 15.4.1 Temperature control 15.4.1.1 Pumped liquid loop system <\/td>\n<\/tr>\n | ||||||
382<\/td>\n | 15.4.1.2 Two-phase transport system <\/td>\n<\/tr>\n | ||||||
383<\/td>\n | 15.4.2 Instrumentation requirements <\/td>\n<\/tr>\n | ||||||
384<\/td>\n | 15.5 Radiator-loop interaction <\/td>\n<\/tr>\n | ||||||
385<\/td>\n | 15.5.1 Boosting radiator temperature with a heat pump <\/td>\n<\/tr>\n | ||||||
390<\/td>\n | 15.5.2 Thermal-storage assisted radiator <\/td>\n<\/tr>\n | ||||||
392<\/td>\n | 15.5.2.1 Coating degradation and radiator life <\/td>\n<\/tr>\n | ||||||
393<\/td>\n | 15.5.3 Steerable radiators <\/td>\n<\/tr>\n | ||||||
395<\/td>\n | 15.5.3.1 Rotary thermal couplings <\/td>\n<\/tr>\n | ||||||
402<\/td>\n | 15.5.3.2 Rotatable fluid transfer coupling <\/td>\n<\/tr>\n | ||||||
404<\/td>\n | 15.5.4 Radiators coupling <\/td>\n<\/tr>\n | ||||||
406<\/td>\n | 15.6 Capillary pumped loop (cpl) technology <\/td>\n<\/tr>\n | ||||||
410<\/td>\n | 15.6.1 Advantages of cpl systems 15.6.2 CPL performance constraints 15.6.3 CPL basic system concept <\/td>\n<\/tr>\n | ||||||
411<\/td>\n | 15.6.3.1 Heat acquisition <\/td>\n<\/tr>\n | ||||||
412<\/td>\n | 15.6.3.2 Heat transport 15.6.3.3 Heat rejection <\/td>\n<\/tr>\n | ||||||
413<\/td>\n | 15.6.3.4 Controls 15.7 Components 15.7.1 Pumping systems 15.7.1.1 Monogroove heat pipe <\/td>\n<\/tr>\n | ||||||
414<\/td>\n | 15.7.1.2 Capillary pump 15.7.1.3 Vapour compressor 15.7.1.4 Mechanical pump 15.7.1.5 Osmotic pump <\/td>\n<\/tr>\n | ||||||
415<\/td>\n | 15.7.1.6 Biomorph pump <\/td>\n<\/tr>\n | ||||||
416<\/td>\n | 15.7.2 Mounting plates <\/td>\n<\/tr>\n | ||||||
418<\/td>\n | 15.7.3 Vapour quality sensors <\/td>\n<\/tr>\n | ||||||
419<\/td>\n | 15.7.3.2 Capacitance methods <\/td>\n<\/tr>\n | ||||||
422<\/td>\n | 15.7.4 Fluid disconnects <\/td>\n<\/tr>\n | ||||||
424<\/td>\n | 16 Control technology 16.1 Basic definitions <\/td>\n<\/tr>\n | ||||||
425<\/td>\n | 16.2 General description of control systems 16.2.1 Introduction <\/td>\n<\/tr>\n | ||||||
426<\/td>\n | 16.2.2 Closed-loop control systems 16.2.3 Open-loop control system <\/td>\n<\/tr>\n | ||||||
427<\/td>\n | 16.2.4 Adaptative control systems <\/td>\n<\/tr>\n | ||||||
428<\/td>\n | 16.2.5 Learning control system 16.2.6 Trade-off of open- and closed-loop control systems <\/td>\n<\/tr>\n | ||||||
429<\/td>\n | 16.2.6.1 Effect of feedback on overall gain 16.2.6.2 Effect of feedback on stability <\/td>\n<\/tr>\n | ||||||
430<\/td>\n | 16.2.6.3 Effect of feedback on sensitivity <\/td>\n<\/tr>\n | ||||||
431<\/td>\n | 16.2.6.4 Effect of feedback on external disturbance or noise <\/td>\n<\/tr>\n | ||||||
433<\/td>\n | 16.3 Basic control actions 16.3.1 Introduction <\/td>\n<\/tr>\n | ||||||
434<\/td>\n | 16.3.2 Two-position or on-off control action <\/td>\n<\/tr>\n | ||||||
435<\/td>\n | 16.3.3 Proportional control action (p controller) <\/td>\n<\/tr>\n | ||||||
436<\/td>\n | 16.3.4 Integral control action (i controller). <\/td>\n<\/tr>\n | ||||||
437<\/td>\n | 16.3.5 Proportional-integral control action (pi controller) <\/td>\n<\/tr>\n | ||||||
438<\/td>\n | 16.3.6 Proportional-derivative control action (pd controller) <\/td>\n<\/tr>\n | ||||||
439<\/td>\n | 16.3.7 Proportional-integral-derivative control action (pid controller) <\/td>\n<\/tr>\n | ||||||
440<\/td>\n | 16.3.8 Summary <\/td>\n<\/tr>\n | ||||||
441<\/td>\n | 16.4 Implementation techniques of control laws 16.4.1 Introduction 16.4.1.1 Digital control systems <\/td>\n<\/tr>\n | ||||||
443<\/td>\n | 16.4.1.2 Analog controllers 16.4.2 Devices characterization 16.4.2.1 Pressure systems <\/td>\n<\/tr>\n | ||||||
444<\/td>\n | 16.4.2.2 Valves <\/td>\n<\/tr>\n | ||||||
445<\/td>\n | 16.4.2.3 Dashpots <\/td>\n<\/tr>\n | ||||||
447<\/td>\n | 16.4.3 Analog-controller implementation techniques <\/td>\n<\/tr>\n | ||||||
448<\/td>\n | 16.4.3.1 Proportional control actions <\/td>\n<\/tr>\n | ||||||
450<\/td>\n | 16.4.3.2 Proportional-derivative control actions <\/td>\n<\/tr>\n | ||||||
453<\/td>\n | 16.4.3.3 Integral control actions <\/td>\n<\/tr>\n | ||||||
454<\/td>\n | 16.4.3.4 Proportional-integral control actions <\/td>\n<\/tr>\n | ||||||
457<\/td>\n | 16.4.3.5 Proportional-integral-derivative control actions <\/td>\n<\/tr>\n | ||||||
458<\/td>\n | 16.4.4 Summary <\/td>\n<\/tr>\n | ||||||
460<\/td>\n | 16.5 Hardware description 16.5.1 Introduction <\/td>\n<\/tr>\n | ||||||
462<\/td>\n | 16.5.2 Controllers 16.5.2.1 Digital\/analog controllers trade\/off <\/td>\n<\/tr>\n | ||||||
464<\/td>\n | 16.5.2.2 Digital controllers <\/td>\n<\/tr>\n | ||||||
467<\/td>\n | 16.5.3 Sensors 16.5.3.1 Effects of the sensor on system performance <\/td>\n<\/tr>\n | ||||||
468<\/td>\n | 16.5.3.2 Temperature sensors <\/td>\n<\/tr>\n | ||||||
469<\/td>\n | 16.5.3.3 Pressure sensor 16.5.3.4 Flow sensors <\/td>\n<\/tr>\n | ||||||
470<\/td>\n | 16.5.4 Actuators. Control valves <\/td>\n<\/tr>\n | ||||||
471<\/td>\n | 16.6 Control software <\/td>\n<\/tr>\n | ||||||
474<\/td>\n | 16.7 Existing systems 16.7.1 Space radiator system 16.7.1.1 General description <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Space Engineering. Thermal design handbook – Fluid Loops<\/b><\/p>\n |