{"id":385314,"date":"2024-10-20T03:30:07","date_gmt":"2024-10-20T03:30:07","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-61788-22-22021\/"},"modified":"2024-10-26T06:21:00","modified_gmt":"2024-10-26T06:21:00","slug":"bs-en-iec-61788-22-22021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-61788-22-22021\/","title":{"rendered":"BS EN IEC 61788-22-2:2021"},"content":{"rendered":"
This part of IEC 61788 is applicable to high-Tc Josephson junctions. It specifies terms, definitions, symbols and the measurement and estimation method for normal state resistance (Rn) and intrinsic critical current (Ici), based on a combination of selecting a data set from measured U-I curves with a geometric mean criterion and fitting a hyperbolic function to that data set.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 4 Symbols <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 5 Principle of measurement method 6 Apparatus 6.1 General 6.2 Cryogenic system <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 6.3 Electrical measurement system 6.4 Circuitry Figures Figure 1 \u2013 Typical circuitry for voltage-current (U\u2013I) characteristic curve measurement <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 7 Estimation of normal state resistance (Rn) and intrinsic critical current (Ici) 7.1 Calculation method Figure 2 \u2013 Ideal U\u2013I characteristic curve (red line) andhyperbolic function (RSJ) model curve (dotted line) <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 7.2 Geometric mean criterion for hyperbolic function fitting 8 Standard uncertainty 8.1 General 8.2 Type A uncertainty <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 8.3 Type B uncertainty 8.3.1 General 8.3.2 Temperature Tables Table 1 \u2013 Typical relative standard Type A uncertaintyfor high-Tc Josephson junctions <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure 3 \u2013 Geometric mean criterion and RSJ model fitting for TUT-JJ05 at 75,8 K <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 8.3.3 Voltage measurement 8.3.4 Current measurement Figure 4 \u2013 Geometric mean criterion and RSJ model fitting for TUT-JJ05 at 76,3 K <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 8.4 Budget table Table 2 \u2013 Budget table for Rn Table 3 \u2013 Budget table for Ici <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 8.5 Uncertainty requirement 9 Test report 9.1 Identification of test device 9.2 Rn value 9.3 Ici value 9.4 Standard uncertainty 9.5 Atmospheric pressure 9.6 Miscellaneous optional report <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Annex A (informative)Calculation technique and practical applicationto high-Tc Josephson junctions A.1 General A.2 Hyperbolic function fitting method <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | A.3 Geometric mean method Figure A.1 \u2013 U\u2013I curve based on resistively shunted junction (RSJ) model Figure A.2 \u2013 U\u2013I curve affected by noise-rounding and self-heating <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | A.4 Combined method Figure A.3 \u2013 Application of geometric mean method to ideal U\u2013I in Figure A.1 <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | A.5 Estimation of Rn, Ici, uA,R and uA,I A.5.1 General A.5.2 High-Tc Josephson junction (JL350) Figure A.4 \u2013 Application of geometric mean method to U\u2013Iwith noise-rounding and self-heating effects in Figure A.2 Table A.1 \u2013 Rn, Ici, uA,R and uA,I values of high-Tc Josephson junctions <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Figure A.5 \u2013 U\u2013I curve of JL350 Figure A.6 \u2013 Application of geometric mean method to Figure A.5 <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | A.5.3 High-Tc Josephson junction (JL351) Figure A.7 \u2013 Result of RSJ model fitting for JL350 <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Figure A.8 \u2013 U\u2013I curve of JL351 Figure A.9 \u2013 Application of geometric mean method to Figure A.8 <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | A.5.4 High-Tc Josephson junction (TUT) Figure A.10 \u2013 Result of RSJ model fitting for JL351 <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure A.11 \u2013 U\u2013I curve of TUT with a small Im Figure A.12 \u2013 Application of geometric mean method to TUT <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Figure A.13 \u2013 Application of adjusted geometrical mean method to TUT Figure A.14 \u2013 Result of RSJ model fitting for TUT <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Annex B (informative)Practical application to low-Tc Josephson junctions B.1 General B.2 Estimation of Rn, Ici, uA,R and uA,I B.2.1 General B.2.2 Low-Tc Josephson junction (IU1) Table B.1 \u2013 Rn, Ici, uA,R and uA,I values of low-Tc Josephson junctions <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | B.2.3 Low-Tc Josephson junction (IU2) Figure B.1 \u2013 Application of geometric mean method to IU1 Figure B.2 \u2013 Result of RSJ model fitting for IU1 <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | B.2.4 Low-Tc Josephson junction (IU3) Figure B.3 \u2013 Application of geometric mean method to IU2 Figure B.4 \u2013 Result of RSJ model fitting for IU2 <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Figure B.5 \u2013 Application of geometric mean method to IU3 Figure B.6 \u2013 Result of RSJ model fitting for IU3 <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | B.2.5 Low-Tc Josephson junction (IU4) Figure B.7 \u2013 Application of geometric mean method to IU4 Figure B.8 \u2013 Result of RSJ model fitting for IU4 <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Superconductivity – Normal state resistance and critical current measurement. High-T<\/i>c<\/sub> Josephson junction<\/b><\/p>\n |