{"id":398634,"date":"2024-10-20T04:37:41","date_gmt":"2024-10-20T04:37:41","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-c57-15-2017\/"},"modified":"2024-10-26T08:25:13","modified_gmt":"2024-10-26T08:25:13","slug":"ieee-c57-15-2017","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-c57-15-2017\/","title":{"rendered":"IEEE C57.15-2017"},"content":{"rendered":"
Revision Standard – Active.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | Front Cover <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | Title page <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 1 Scope 2 Normative references 2.1 IEC references 2.2 IEEE references <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 2.3 SAE references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 4 Use of normative references <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 5 Service conditions 5.1 Usual service conditions 5.1.1 General 5.1.2 Temperature 5.1.3 Altitude 5.1.4 Supply voltage 5.1.5 Load current 5.1.6 Outdoor operation 5.1.7 Tank or enclosure finish <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 5.2 Loading at other than rated conditions 5.3 Unusual service conditions 5.3.1 General 5.3.2 Unusual temperature and altitude conditions 5.3.3 Insulation at high altitude <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 5.3.4 Other unusual service conditions Tables Table 1 \u2013 Dielectric strength correction factors for altitudes greater than 1\u00a0000\u00a0m (3\u00a0300\u00a0ft) <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 6 Rating data 6.1 Cooling classes of voltage regulators 6.1.1 General 6.1.2 Liquid-immersed (fire point \u2264 300\u00a0\u00b0C) air-cooled 6.1.3 Liquid-immersed (fire point > 300\u00a0\u00b0C) air-cooled 6.2 Ratings 6.2.1 General <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 6.2.2 Terms in which rating is expressed 6.2.3 Preferred ratings Table 2 \u2013 Limits of temperature-rise <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Table 3 \u2013 Ratings for liquid-immersed 60\u00a0Hz step-voltage regulators (single-phase) <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Table 4 \u2013 Ratings for liquid-immersed 50\u00a0Hz step-voltage regulators (single-phase) <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Table 5 \u2013 Ratings for liquid-immersed 60\u00a0Hz step-voltage regulators (three-phase) <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 6.2.4 Supplementary voltage ratings Table 6 \u2013 Ratings for liquid-immersed 50\u00a0Hz step-voltage regulators (three-phase) Table 7 \u2013 Supplementary voltage ratings <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6.3 Supplementary continuous-current ratings 6.3.1 General 6.3.2 Optional forced-air ratings Table 8 \u2013 Supplementary continuous-current ratings <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.4 Taps 6.5 Voltage supply ratios 6.6 Insulation levels Table 9 \u2013 Forced-air ratings relationship Table 10 \u2013 Values of voltage supply ratios <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6.7 Losses 6.7.1 General 6.7.2 Total loss 6.7.3 Tolerance for losses 6.7.4 Determination of losses and excitation current Table 11 \u2013 Interrelationships of dielectric insulation levels for voltage regulators <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 6.8 Short-circuit requirements 6.8.1 General Table 12 \u2013 Values of k <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 6.8.2 Mechanical capability demonstration 6.8.3 Thermal capability of voltage regulators for short-circuit conditions 6.9 Sound pressure level for liquid-immersed voltage regulators Table 13 \u2013 Maximum no-load (excitation) sound pressure levels <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 6.10 Tests 6.10.1 General 6.10.2 Routine tests 6.10.3 Type tests <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 7 Construction 7.1 Bushings <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 7.2 External dielectric clearances 7.3 Terminal markings Table 14 \u2013 Electrical characteristics of voltage regulator bushings Table 15 \u2013 External dielectric clearances <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 7.4 Diagram of connections Figures Figure 1 \u2013 Single-phase voltage regulators Figure 2 \u2013 Three-phase voltage regulators with two arrangements of bushings <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 7.5 Nameplates <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 7.6 Tank construction 7.6.1 General 7.6.2 Pressure-relief valve 7.6.3 Cover assembly <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 7.6.4 Sudden pressure relay 7.6.5 Lifting lugs 7.6.6 Support lugs <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 3 \u2013 Type-B support lugs <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 7.6.7 Substation bases 7.6.8 Tank grounding provisions Figure 4 \u2013 Type-C support lugs <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 7.7 Components and accessories 7.7.1 Components for full automatic control and operation 7.7.2 Accessories for single-phase step-voltage regulators Table 16 \u2013 Bushing terminal applications <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 7.7.3 Accessories for three-phase step-voltage regulators 8 Other requirements 8.1 General 8.2 Other components and accessories 8.2.1 General 8.2.2 Single- and three-phase voltage regulators <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 8.2.3 Three-phase voltage regulators 9 Test code 9.1 General 9.2 Resistance measurements 9.2.1 General 9.2.2 Determination of cold temperature <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 9.2.3 Conversion of resistance measurements 9.2.4 Resistance measurement methods Figure 5 \u2013 Connections for voltmeter-ammeter method of resistance measurement <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 9.3 Polarity test 9.3.1 General <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 9.3.2 Polarity by inductive kick 9.3.3 Polarity by ratio meter 9.4 Ratio test 9.4.1 General 9.4.2 Taps Figure 6 \u2013 Voltage regulator connected for polarity testing \u2013Voltage regulator in Neutral position <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 9.4.3 Voltage and frequency 9.4.4 Three-phase voltage regulators 9.4.5 Tolerance for ratio 9.4.6 Ratio test methods <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Figure 7 \u2013 Voltmeter arranged to read the differencebetween the two output side voltages Figure 8 \u2013 Voltmeters arranged to read the two series winding voltages <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 9.5 No-load loss and excitation current 9.5.1 General Figure 9 \u2013 Basic circuit of ratio meter <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 9.5.2 No-load loss test Figure 10 \u2013 Connection for no-load loss test of single-phase voltage regulator without instrument transformers <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 9.5.3 Waveform correction of no-load loss Figure 11 \u2013 Connections for no-load loss test of a single-phase voltage regulator with instrument transformers <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 9.5.4 Test methods for three-phase voltage regulators 9.5.5 Determination of excitation (no-load) current <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 9.5.6 Measurements 9.5.7 Correction of loss measurement due to metering phase-angle errors Figure 12 \u2013 Three-phase voltage regulator connections for no-load loss andexcitation current test using three-wattmeter method <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 9.6 Load loss and impedance voltage 9.6.1 General Table 17 \u2013 Requirements for phase-angle error correction <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 9.6.2 Factors affecting the values of load loss and impedance voltage <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 9.6.3 Tests for measuring load loss and impedance voltage <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure 13 \u2013 Single-phase voltage regulator connections for load loss and impedance voltage test without instrument transformers Figure 14 \u2013 Single-phase voltage regulator connections for load loss and impedance voltage test with instrument transformers <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 9.6.4 Calculation of load loss and impedance voltage from test data Figure 15 \u2013 Three-phase voltage regulator connections for load loss andimpedance voltage test using the three-wattmeter method <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 9.7 Dielectric tests 9.7.1 General <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 9.7.2 Lightning impulse type test <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 9.7.3 Lightning impulse routine test <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 9.7.4 Applied-voltage test 9.7.5 Induced-voltage test <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 9.7.6 Insulation power factor tests <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 9.7.7 Insulation resistance tests Table 18 \u2013 Measurements to be made in insulation power factor tests <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 9.8 On-load tap-changer routine tests 9.8.1 General <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 9.8.2 Mechanical test 9.8.3 Auxiliary circuits insulation test 9.9 Control system routine tests 9.9.1 Applied voltage 9.9.2 Operation 9.10 Temperature-rise test 9.10.1 General <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 9.10.2 Test methods <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Figure 16 \u2013 Example of loading back method: single-phase <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Figure 17 \u2013 Example of loading back method: three-phase <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 9.10.3 Resistance measurements <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 9.10.4 Temperature measurements <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 9.10.5 Correction of temperature-rise test results <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 9.11 Short-circuit test 9.11.1 General 9.11.2 Test connections <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 9.11.3 Test requirements 9.11.4 Test procedure <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 9.11.5 Proof of satisfactory performance <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 9.12 Determination of sound level 9.12.1 General <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 9.12.2 Applicability 9.12.3 Instrumentation 9.12.4 Test conditions <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | 9.12.5 Microphone positions Figure 18 \u2013 Microphone location for measuring sound level <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 9.12.6 Sound level measurements <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Table 19 \u2013 Ambient sound pressure level correction <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Table 20 \u2013 Approximate values of the average acoustic absorption coefficient <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Figure 19 \u2013 Sound reflection correction factor “K” calculated as per Equation (29) <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 9.12.7 Determination of sound level of a voltage regulator <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | 9.12.8 Presentation of results <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 9.13 Calculated data 9.13.1 Reference temperature Figure 20 \u2013 Measurements using the sound pressure method Figure 21 \u2013 Measurements using the sound intensity method <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | 9.13.2 Loss and excitation current 9.13.3 Efficiency 9.13.4 Calculation of winding temperature during a short-circuit <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 9.13.5 Certified test data <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 10 Component tests 10.1 General 10.2 Enclosure integrity 10.2.1 General 10.2.2 Static pressure <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | 10.2.3 Dynamic pressure 10.2.4 Type test for fault current capability of a voltage regulator enclosure <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 10.3 On-load tap-changer 10.3.1 General 10.3.2 Type tests <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | 10.4 Control system 10.4.1 General <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 10.4.2 Control device construction 10.4.3 Accuracy <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 10.4.4 Type tests Table 21 \u2013 Voltage level values for select line-drop compensation <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Table 22 \u2013 Control supply voltage <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | 11 Universal interface 11.1 Connection between control enclosure and apparatus <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 11.2 Universal interface connector Figure 22 \u2013 Universal interface specification Figure 23 \u2013 Socket\/pin detail for universal interface <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Table 23 \u2013 Socket pin identification for connector <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Figure 24 \u2013 Universal interface locations <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Annex A (informative) Unusual temperature and altitude conditions A.1 Unusual temperatures and altitude service conditions A.2 Effects of altitude on temperature-rise A.3 Operation at rated kVA A.4 Operation at less than rated kVA Table A.1 \u2013 Maximum allowable average temperature of cooling air for rated kVAa Table A.2 \u2013 Rated kVA correction factors for altitudes greater than 1\u00a0000 m (3\u00a0300 ft) <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Annex B (informative) Field dielectric tests B.1 Tests on bushings B.2 Dielectric tests in the field <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | Annex C (informative) Step-voltage regulator construction C.1 General Figure C.1 \u2013 Basic diagram of single-phase, Type A, step-voltage regulator Figure C.2 \u2013 Basic diagram of single-phase, Type B, step-voltage regulator <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | C.2 Type A C.3 Type B Figure C.3 \u2013 Type A Figure C.4 \u2013 Type B <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | C.4 Series transformer construction C.5 Reactor circuit C.6 Equalizer winding Figure C.5 \u2013 Example of series transformer construction <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Figure C.6 \u2013 Equalizer winding and reactor circuitry \u2013 Non-bridging tap position Figure C.7 \u2013 Equalizer winding and reactor circuitry \u2013 Bridging tap position <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Annex D (informative) Hazards of Bypass off Neutral <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Figure D.1 \u2013 “Bypass off Neutral” power circuit <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Figure D.2 \u2013 Example of “Bypass off Neutral” RMS symmetricalcurrent pattern of a Type A design <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Figure D.3 \u2013 Example of “Bypass off Neutral” RMS symmetrical current pattern of a Type B design <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Annex E (informative) Overloading of step-voltage regulators <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Figure E.1 \u2013 Example of overload capability by tap position Figure E.2 \u2013 Example of Type A load loss vs tap position <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | Figure E.3 \u2013 Example of Type B load loss vs tap position Figure E.4 \u2013 Tap-changer arc interruption envelope <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Figure E.5 \u2013 Contact wear <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Annex F (informative) Power capacitor and distributed generation compatibility F.1 Power capacitor application issues F.1.1 General F.1.2 Power circuit for consideration F.1.3 Voltage regulator incorporating line-drop compensation (LDC) in the control Figure F.1 \u2013 Power distribution substation and representative distribution feeder <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Table F.1 \u2013 Relevant system voltages and currents with capacitor location <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | F.1.4 Voltage regulator incorporating line current compensation (LCC) in the control F.2 Distributed generation application issues F.2.1 General <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | F.2.2 Control operation with power reversal recognition <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | F.2.3 Power circuit for consideration F.2.4 Distributed generator alternatives Figure F.2 \u2013 Power distribution system with distributed generation <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | F.2.5 P-Q summary F.2.6 Example system with distribution generation (DG) Figure F.3 \u2013 P-Q diagram quadrant relationships <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Table F.2 \u2013 System and voltage regulator control response with example distributed generation (DG), no line-drop compensation <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | F.2.7 Expanded example, distributed generation mode F.2.8 Caveats F.2.9 Conclusions <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE\/IEC International Standard- Power transformers – Part 21: Standard requirements, terminology, and test code for step-voltage regulators<\/b><\/p>\n |