{"id":402821,"date":"2024-10-20T05:03:06","date_gmt":"2024-10-20T05:03:06","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-cen-tr-17603-32-062022\/"},"modified":"2024-10-26T08:59:34","modified_gmt":"2024-10-26T08:59:34","slug":"bsi-pd-cen-tr-17603-32-062022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-cen-tr-17603-32-062022\/","title":{"rendered":"BSI PD CEN\/TR 17603-32-06:2022"},"content":{"rendered":"

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies. The Structural materials handbook contains 8 Parts. A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8. The parts are as follows: Part 1 Overview and material properties and applications Clauses 1 \u2010 9 Part 2 Design calculation methods and general design aspects Clauses 10 \u2010 22 Part 3 Load transfer and design of joints and design of structures Clauses 23 \u2010 32 Part 4 Integrity control, verification guidelines and manufacturing Clauses 33 \u2010 45 Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints Clauses 46 \u2010 63 Part 6 Fracture and material modelling, case studies and design and integrity control and inspection Clauses 64 \u2010 81 Part 7 Thermal and environmental integrity, manufacturing aspects, in\u2010orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies Clauses 82 \u2010 107 Part 8 Glossary NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
29<\/td>\n64 Behaviour of advanced composites
64.1 Introduction <\/td>\n<\/tr>\n
30<\/td>\n64.2 Summary of material behaviour
64.2.1 Metal matrix composites
64.2.1.1 Particulate reinforced (MMCp)
64.2.1.2 Fibre reinforced (MMCf) <\/td>\n<\/tr>\n
31<\/td>\n64.2.2 Inorganic ceramic matrix composites
64.2.2.1 Fibre reinforced (ICMCf)
64.3 Significant behavioural characteristics
64.3.1 General
64.3.2 Modulus mismatch <\/td>\n<\/tr>\n
32<\/td>\n64.3.3 Matrix-to-reinforcement interface <\/td>\n<\/tr>\n
33<\/td>\n64.3.4 In-situ fibre strength
64.3.5 CTE mismatch <\/td>\n<\/tr>\n
34<\/td>\n64.3.6 Thermal history and residual stresses
64.3.7 Multiple cracking
64.3.7.1 Fibre reinforced materials
64.3.7.2 Particulate reinforced materials
64.3.8 Thermo-mechanical fatigue (TMF)
64.4 Basic fracture characteristics
64.4.1 General <\/td>\n<\/tr>\n
35<\/td>\n64.4.2 Particulate reinforced MMC <\/td>\n<\/tr>\n
36<\/td>\n64.4.3 Fibre reinforced MMC <\/td>\n<\/tr>\n
37<\/td>\n64.4.4 Fibre reinforced CMC
64.4.5 Defining design values
64.4.5.1 General <\/td>\n<\/tr>\n
38<\/td>\n64.4.5.2 Failure criteria
64.5 Failure criteria for CMC
64.5.1 Introduction
64.5.2 Design aspects
64.5.2.1 General
64.5.2.2 Materials <\/td>\n<\/tr>\n
39<\/td>\n64.5.2.3 Failure loads
64.5.2.4 Test and analysis <\/td>\n<\/tr>\n
40<\/td>\n64.5.2.5 Load introduction points <\/td>\n<\/tr>\n
41<\/td>\n64.6 References
64.6.1 General <\/td>\n<\/tr>\n
42<\/td>\n65 Particulate reinforced metals
65.1 Introduction
65.1.1 Materials
65.1.1.1 General
65.1.1.2 Microstructure
65.1.2 Composites
65.1.2.1 Matrix <\/td>\n<\/tr>\n
43<\/td>\n65.1.3 Particulate reinforcement
65.1.3.1 Types
65.1.3.2 Size <\/td>\n<\/tr>\n
44<\/td>\n65.2 Damage mechanisms
65.2.1 Unnotched specimen <\/td>\n<\/tr>\n
45<\/td>\n65.2.2 Notched specimen
65.2.3 Influence of particles <\/td>\n<\/tr>\n
46<\/td>\n65.2.4 Composite performance
65.3 Failure modes and fracture behaviour
65.3.1 Matrix effects
65.3.1.1 General <\/td>\n<\/tr>\n
47<\/td>\n65.3.1.2 Duplex microstructures
65.3.2 Failure mode studies
65.3.3 Particulate shape and aspect ratio <\/td>\n<\/tr>\n
49<\/td>\n65.3.4 Particulate fracture
65.3.5 Void nucleation and growth <\/td>\n<\/tr>\n
50<\/td>\n65.3.6 Fracture toughness
65.3.6.1 General
65.3.6.2 Common terms <\/td>\n<\/tr>\n
51<\/td>\n65.4 Thermo-mechanical fatigue (TMF) and creep
65.4.1 Residual stresses
65.4.2 Temperature
65.4.3 Superplasticity
65.4.4 Applications
65.5 References
65.5.1 General <\/td>\n<\/tr>\n
54<\/td>\n66 Fibre reinforced metals
66.1 Introduction
66.1.1 Materials
66.1.1.1 General
66.1.1.2 Matrix <\/td>\n<\/tr>\n
55<\/td>\n66.1.1.3 Fibre reinforcement
66.2 Damage mechanisms
66.2.1 General
66.2.2 Effect of lay-up
66.2.2.1 General
66.2.2.2 Boron reinforced aluminium
66.2.2.3 Titanium matrix composites <\/td>\n<\/tr>\n
56<\/td>\n66.3 Failure modes
66.3.1 General
66.3.2 Matrix dominated failure
66.3.3 Fibre-dominated damage
66.3.4 Self-similar damage growth <\/td>\n<\/tr>\n
57<\/td>\n66.3.5 Fibre-matrix interfacial failures
66.4 Thermo-mechanical and creep response
66.4.1 General <\/td>\n<\/tr>\n
58<\/td>\n66.4.2 Application
66.5 References
66.5.1 General <\/td>\n<\/tr>\n
60<\/td>\n67 Inorganic ceramic matrix composites
67.1 Introduction
67.1.1 General <\/td>\n<\/tr>\n
61<\/td>\n67.1.2 Matrix
67.1.3 Interface
67.1.4 Fibres
67.2 Damage mechanisms
67.2.1 Material effects
67.2.2 Microcracking <\/td>\n<\/tr>\n
63<\/td>\n67.2.3 Porosity <\/td>\n<\/tr>\n
64<\/td>\n67.2.4 Manufacturing and in-service effects
67.2.5 Crack propagation <\/td>\n<\/tr>\n
65<\/td>\n67.3 Fracture behaviour
67.3.1 Toughness parameters
67.3.1.1 General
67.3.1.2 Testing <\/td>\n<\/tr>\n
70<\/td>\n67.3.2 Test specimens
67.3.2.1 Single edge notched beam (SENB) specimens
67.3.3 ‘R’ curves <\/td>\n<\/tr>\n
72<\/td>\n67.4 References <\/td>\n<\/tr>\n
73<\/td>\n68 Modelling advanced materials
68.1 Introduction
68.1.1 Polymer composites
68.1.2 Metal matrix composites
68.1.2.1 General
68.1.2.2 Fibre reinforced MMC
68.1.2.3 Particulate MMC
68.1.3 Inorganic ceramic matrix materials <\/td>\n<\/tr>\n
74<\/td>\n68.1.4 Summary of models
68.1.4.1 General
68.1.4.2 Law of mixtures
68.1.4.3 Shear lag model
68.1.4.4 Laminated plate model
68.1.4.5 Eshelby’s models
68.1.4.6 Other models <\/td>\n<\/tr>\n
75<\/td>\n68.2 Particulate reinforced metals
68.2.1 Use of models
68.3 Fibre reinforced metals
68.3.1 Use of models <\/td>\n<\/tr>\n
76<\/td>\n68.4 Inorganic ceramic matrix composites
68.4.1 Use of models
68.4.1.1 General
68.4.1.2 On-set of matrix cracking
68.4.1.3 Distance between cracks <\/td>\n<\/tr>\n
77<\/td>\n68.4.1.4 Crack \u2018closure\u2019 effect
68.4.1.5 Crack growth parameters <\/td>\n<\/tr>\n
79<\/td>\n68.5 References
68.5.1 General <\/td>\n<\/tr>\n
81<\/td>\n69 High-temperature structures
69.1 Introduction
69.1.1 Applications
69.1.2 Performance
69.1.3 High-temperature materials <\/td>\n<\/tr>\n
82<\/td>\n69.1.4 Development approach
69.2 Functions
69.2.1 General <\/td>\n<\/tr>\n
83<\/td>\n69.2.2 Aerodynamic heating
69.2.2.1 Heat flux
69.2.2.2 Other factors <\/td>\n<\/tr>\n
84<\/td>\n69.2.3 Propulsive power generation
69.2.3.1 Fuels
69.2.3.2 Temperature
69.2.3.3 Spaceplanes
69.2.3.4 Other design factors <\/td>\n<\/tr>\n
85<\/td>\n69.3 Operating environments
69.4 Integration <\/td>\n<\/tr>\n
86<\/td>\n69.5 Heat management
69.6 Life expectancy
69.6.1 General
69.6.2 Launcher
69.6.3 Spaceplane <\/td>\n<\/tr>\n
87<\/td>\n69.6.4 Satellite
69.7 Materials selection
69.8 Manufacturing <\/td>\n<\/tr>\n
88<\/td>\n69.9 Applications
69.9.1 Future reusable launch vehicles
69.9.1.1 European perspectives and objectives <\/td>\n<\/tr>\n
89<\/td>\n69.9.2 Flight-vehicle dependent
69.9.2.1 Summary of concept vehicles <\/td>\n<\/tr>\n
90<\/td>\n69.9.2.2 Summary of high-temperature structural materials
69.9.2.3 Summary of hypersonic engine materials technologies <\/td>\n<\/tr>\n
93<\/td>\n69.9.3 Non-vehicle dependent
69.9.3.1 General <\/td>\n<\/tr>\n
94<\/td>\n69.9.3.2 Technologies <\/td>\n<\/tr>\n
96<\/td>\n69.9.4 Summary of European capabilities <\/td>\n<\/tr>\n
97<\/td>\n69.10 References
69.10.1 General <\/td>\n<\/tr>\n
99<\/td>\n70 Thermo-structural designs
70.1 Introduction
70.1.1 General
70.1.2 Single mission <\/td>\n<\/tr>\n
100<\/td>\n70.1.3 Reusable vehicles
70.2 Spaceplanes
70.2.1 Hermes
70.2.2 HOPE <\/td>\n<\/tr>\n
101<\/td>\n70.2.3 Single- and two-stage-to-orbit
70.3 Hermes <\/td>\n<\/tr>\n
102<\/td>\n70.4 HOPE <\/td>\n<\/tr>\n
106<\/td>\n70.5 HOTOL <\/td>\n<\/tr>\n
108<\/td>\n70.6 S\u00c4NGER <\/td>\n<\/tr>\n
109<\/td>\n70.7 National aerospace plane (NASP) <\/td>\n<\/tr>\n
111<\/td>\n70.8 Demonstrator panels
70.8.1 General
70.8.2 NASP
70.9 Nose cones
70.9.1 General
70.9.2 Shuttle orbiter <\/td>\n<\/tr>\n
113<\/td>\n70.9.3 Hermes <\/td>\n<\/tr>\n
115<\/td>\n70.9.4 HOPE
70.9.5 NASP
70.9.6 HOTOL <\/td>\n<\/tr>\n
116<\/td>\n70.9.7 S\u00c4NGER
70.9.8 X-38 <\/td>\n<\/tr>\n
117<\/td>\n70.10 Wing leading edges (WLE)
70.10.1 General
70.10.2 Shuttle orbiter
70.10.3 Buran <\/td>\n<\/tr>\n
119<\/td>\n70.10.4 Hermes <\/td>\n<\/tr>\n
120<\/td>\n70.10.5 HOPE
70.10.6 Others <\/td>\n<\/tr>\n
121<\/td>\n70.11 Box sections
70.11.1 NASP
70.11.2 Hermes <\/td>\n<\/tr>\n
122<\/td>\n70.12 Cryogenic tanks
70.13 Heat shield designs <\/td>\n<\/tr>\n
125<\/td>\n70.14 Air inlet-intakes <\/td>\n<\/tr>\n
126<\/td>\n70.15 Earth re-entry capsules <\/td>\n<\/tr>\n
128<\/td>\n70.16 Manned re-entry vehicles <\/td>\n<\/tr>\n
129<\/td>\n70.17 Deep space missions
70.17.1 CNSR ROSETTA: Earth return capsule <\/td>\n<\/tr>\n
130<\/td>\n70.18 Mars landers
70.18.1 General
70.18.2 NASA Pathfinder\/MESUR network landers <\/td>\n<\/tr>\n
131<\/td>\n70.18.3 MARSNET
70.19 Cassini-Huygens
70.19.1 General
70.19.2 C-C aerobrake (heat shield) <\/td>\n<\/tr>\n
132<\/td>\n70.19.3 Nose cap front shield with AQ60
70.20 Planetary probes
70.21 Aerobrake designs
70.21.1 General
70.21.2 NASA\/ESA Cassini-Huygens mission <\/td>\n<\/tr>\n
134<\/td>\n70.22 PRORA: USV \u2013 unmanned space vehicle
70.22.1 Background
70.22.1.1 RLV development approach
70.22.1.2 PRORA: Italian national aerospace research programme <\/td>\n<\/tr>\n
135<\/td>\n70.22.2 USV programme
70.22.2.1 Objectives
70.22.2.2 Technologies <\/td>\n<\/tr>\n
136<\/td>\n70.22.2.3 USV programme structure
70.22.2.4 USV programme missions
70.22.3 USV systems and flight test beds
70.22.3.1 General
70.22.3.2 FTB _1 <\/td>\n<\/tr>\n
137<\/td>\n70.22.3.3 FTB _2
70.22.3.4 FTB _3
70.22.4 External configuration of FTB_1 and FTB_2
70.22.4.1 General
70.22.4.2 Design drivers
70.22.4.3 Geometry <\/td>\n<\/tr>\n
138<\/td>\n70.22.5 External configuration of FTB_3
70.22.5.1 General
70.22.5.2 Design drivers <\/td>\n<\/tr>\n
139<\/td>\n70.22.5.3 Geometry <\/td>\n<\/tr>\n
140<\/td>\n70.23 X-38 Body flap
70.23.1 Background
70.23.1.1 Programme <\/td>\n<\/tr>\n
141<\/td>\n70.23.1.2 European participation
70.23.1.3 CMC key technologies <\/td>\n<\/tr>\n
142<\/td>\n70.23.2 Body flaps
70.23.2.1 General
70.23.2.2 Construction
70.23.2.3 OPC – oxidation protection coating <\/td>\n<\/tr>\n
143<\/td>\n70.23.3 Mechanical fasteners <\/td>\n<\/tr>\n
144<\/td>\n70.23.4 CMC to metal attachment <\/td>\n<\/tr>\n
145<\/td>\n70.23.5 Ceramic bearings <\/td>\n<\/tr>\n
146<\/td>\n70.23.6 Ceramic seals <\/td>\n<\/tr>\n
147<\/td>\n70.24 X-38 Nose cap
70.24.1 Background <\/td>\n<\/tr>\n
148<\/td>\n70.24.2 Concept
70.24.2.1 General
70.24.2.2 IFI
70.24.2.3 HTI
70.24.3 Thermal profiles <\/td>\n<\/tr>\n
149<\/td>\n70.24.4 Flexible insulation design <\/td>\n<\/tr>\n
150<\/td>\n70.24.5 Integration and qualification testing
70.24.5.1 Insulation
70.24.5.2 Assembly <\/td>\n<\/tr>\n
151<\/td>\n70.24.5.3 Thermal qualification test
70.24.5.4 Disassembly and visual inspection <\/td>\n<\/tr>\n
152<\/td>\n70.24.5.5 Conclusions
70.24.6 Summary
70.24.6.1 Development
70.24.6.2 Status <\/td>\n<\/tr>\n
153<\/td>\n70.25 Aerobrake: Deployable CMC decelerator
70.25.1 Background
70.25.1.1 Planetary missions
70.25.1.2 Objectives <\/td>\n<\/tr>\n
154<\/td>\n70.25.2 Mars ISRU mission \u2018in-situ resource unit\u2019
70.25.3 Mars ISRU mission \u2013 Concept
70.25.3.1 Aero-assist aeroshell configuration
70.25.3.2 Central heat shield <\/td>\n<\/tr>\n
155<\/td>\n70.25.3.3 Foldable decelerator <\/td>\n<\/tr>\n
157<\/td>\n70.25.3.4 Unfolding and deployment
70.25.4 Mars ISRU mission \u2013 Environmental aspects
70.25.4.1 Micrometeoroids and debris impact
70.26 References
70.26.1 General <\/td>\n<\/tr>\n
162<\/td>\n71 Thermal protection systems
71.1 Introduction
71.1.1 Application
71.1.1.1 Structures <\/td>\n<\/tr>\n
163<\/td>\n71.1.1.2 Propulsion systems
71.1.2 European development programmes
71.1.2.1 Status
71.1.2.2 Examples <\/td>\n<\/tr>\n
164<\/td>\n71.1.3 Concepts <\/td>\n<\/tr>\n
166<\/td>\n71.1.4 Non load-carrying TPS
71.1.5 Load-carrying TPS <\/td>\n<\/tr>\n
167<\/td>\n71.1.6 Reusable structures <\/td>\n<\/tr>\n
168<\/td>\n71.2 Cooling modes
71.2.1 General
71.2.2 Passive TPS
71.2.2.1 Heat sinks <\/td>\n<\/tr>\n
169<\/td>\n71.2.2.2 Ablatives
71.2.2.3 Insulation systems
71.2.3 Active cooling concepts
71.2.3.1 Gas flow
71.2.3.2 Cryogenic fuels <\/td>\n<\/tr>\n
170<\/td>\n71.2.3.3 Liquid coolants
71.3 Early re-entry capsules <\/td>\n<\/tr>\n
172<\/td>\n71.4 Ablative designs
71.4.1 General <\/td>\n<\/tr>\n
173<\/td>\n71.4.2 Programmes
71.4.3 Materials
71.4.3.1 Acusil: Low-density, silicone-based ablatives <\/td>\n<\/tr>\n
174<\/td>\n71.4.3.2 ALS051: Medium-density, silicone-based ablatives <\/td>\n<\/tr>\n
175<\/td>\n71.4.3.3 Epoxy resin and cork ablators <\/td>\n<\/tr>\n
176<\/td>\n71.4.3.4 SPA – Surface protected ablator
71.5 Space Shuttle orbiter
71.5.1 General <\/td>\n<\/tr>\n
177<\/td>\n71.5.2 Materials and configurations <\/td>\n<\/tr>\n
181<\/td>\n71.5.3 In-Service TPS Performance
71.5.3.1 Surface damage
71.5.3.2 Columbia
71.6 Buran
71.6.1 General <\/td>\n<\/tr>\n
183<\/td>\n71.6.2 Materials and configurations
71.7 Advanced carbon reinforced composites
71.7.1 Carbon-carbon composites
71.7.2 ACC – Advanced carbon-carbon <\/td>\n<\/tr>\n
184<\/td>\n71.7.3 Aerospatiale – Aerotiss\u00ae 2.5D <\/td>\n<\/tr>\n
185<\/td>\n71.7.4 Carbon-silicon carbide composites <\/td>\n<\/tr>\n
187<\/td>\n71.8 Durable metallic TPS
71.8.1 General <\/td>\n<\/tr>\n
188<\/td>\n71.8.2 Multiwall TPS <\/td>\n<\/tr>\n
189<\/td>\n71.8.3 Developments
71.8.3.1 General
71.8.3.2 Construction <\/td>\n<\/tr>\n
190<\/td>\n71.8.3.3 Mass distribution
71.8.3.4 Limitations
71.8.3.5 Surface emissivity
71.8.3.6 Static mechanical tests <\/td>\n<\/tr>\n
191<\/td>\n71.8.3.7 Acoustic noise test
71.9 Titanium-based composites
71.9.1 NASP
71.10 Internal multiscreen insulation (IMI)
71.10.1 Concept
71.10.1.1 General
71.10.1.2 Materials and construction <\/td>\n<\/tr>\n
193<\/td>\n71.10.1.3 Theory <\/td>\n<\/tr>\n
194<\/td>\n71.10.2 Development and characterisation
71.10.2.1 General
71.10.2.2 Thermal tests <\/td>\n<\/tr>\n
195<\/td>\n71.10.2.3 Material characterisation
71.10.2.4 Mechanical performance
71.10.2.5 Integration and assembly tests
71.10.2.6 Non-destructive inspection
71.10.2.7 Results <\/td>\n<\/tr>\n
196<\/td>\n71.10.3 Potential applications <\/td>\n<\/tr>\n
197<\/td>\n71.11 Flexible external insulation (FEI)
71.11.1 General
71.11.2 Design concept
71.11.3 Key features <\/td>\n<\/tr>\n
198<\/td>\n71.11.4 Product range <\/td>\n<\/tr>\n
199<\/td>\n71.11.5 Hermes
71.11.5.1 General <\/td>\n<\/tr>\n
200<\/td>\n71.11.5.2 Prequalification tests
71.11.5.3 Status
71.11.6 MSTP programme
71.11.6.1 General
71.11.6.2 Crew transfer vehicle (CTV) specification <\/td>\n<\/tr>\n
201<\/td>\n71.11.6.3 FEI characterisation
71.11.6.4 Structural tests
71.11.6.5 Material and process characterisation <\/td>\n<\/tr>\n
202<\/td>\n71.11.6.6 Design verification <\/td>\n<\/tr>\n
203<\/td>\n71.11.6.7 Status
71.11.7 ARD programme
71.11.7.1 General
71.11.7.2 Design verification
71.11.7.3 Status
71.11.8 Future reusable vehicles <\/td>\n<\/tr>\n
204<\/td>\n71.11.9 Verified performance <\/td>\n<\/tr>\n
205<\/td>\n71.11.10 IFI – Internal flexible insulation development
71.11.10.1 Background
71.11.10.2 Concept <\/td>\n<\/tr>\n
206<\/td>\n71.11.10.3 IFI materials and configuration <\/td>\n<\/tr>\n
207<\/td>\n71.12 CMC shingles
71.12.1 Hermes design concept
71.12.1.1 General <\/td>\n<\/tr>\n
208<\/td>\n71.12.1.2 Shingle construction
71.12.1.3 Performance criteria <\/td>\n<\/tr>\n
209<\/td>\n71.12.2 TETRA\/X-38 programme panels
71.12.2.1 General <\/td>\n<\/tr>\n
210<\/td>\n71.12.2.2 Large C-SiC panel
71.12.2.3 Lightweight shingles <\/td>\n<\/tr>\n
211<\/td>\n71.12.3 SPFI – Surface protected flexible insulation
71.12.3.1 Background
71.12.3.2 Concept <\/td>\n<\/tr>\n
212<\/td>\n71.12.3.3 Description <\/td>\n<\/tr>\n
213<\/td>\n71.12.3.4 Characteristics
71.12.3.5 Structural design <\/td>\n<\/tr>\n
214<\/td>\n71.12.3.6 Thermal design <\/td>\n<\/tr>\n
216<\/td>\n71.12.3.7 Properties <\/td>\n<\/tr>\n
217<\/td>\n71.12.3.8 Structural tests <\/td>\n<\/tr>\n
219<\/td>\n71.12.3.9 Thermal tests <\/td>\n<\/tr>\n
221<\/td>\n71.12.3.10 SPFI performance summary
71.12.3.11 SHEFEX flight experiment <\/td>\n<\/tr>\n
222<\/td>\n71.13 Heat pipes
71.13.1 General <\/td>\n<\/tr>\n
224<\/td>\n71.13.2 Shuttle-type heat pipe cooled wing leading edge
71.13.3 Sodium-Hastelloy-X heat pipe for advanced space transportation system <\/td>\n<\/tr>\n
225<\/td>\n71.13.4 Refractory metal-CMC heat pipe for NASP <\/td>\n<\/tr>\n
226<\/td>\n71.14 Cooled panels
71.14.1 General <\/td>\n<\/tr>\n
227<\/td>\n71.14.2 Demonstrator units <\/td>\n<\/tr>\n
228<\/td>\n71.14.3 Active cooling on NASP
71.14.3.1 General
71.14.3.2 Titanium D-groove panels <\/td>\n<\/tr>\n
229<\/td>\n71.14.3.3 Beryllium skinned tube panels
71.14.3.4 Beryllium platelet components <\/td>\n<\/tr>\n
230<\/td>\n71.14.3.5 Graphite fibre-reinforced copper panel
71.14.3.6 C-SiC\/Refractory metal tube heat-exchangers
71.15 Beryllium TPS
71.15.1 General
71.15.2 Cassini-Huygens heat shield: Phase A configuration
71.15.2.1 Main components <\/td>\n<\/tr>\n
231<\/td>\n71.15.2.2 Material selection
71.15.2.3 Operating conditions <\/td>\n<\/tr>\n
232<\/td>\n71.16 Aerobrakes
71.17 Heat shields
71.17.1 General
71.17.2 SEPCORE\u00ae TPS concept <\/td>\n<\/tr>\n
233<\/td>\n71.17.3 Ceramic heatshield assembly (CHA)
71.17.3.1 General
71.17.3.2 Design concept <\/td>\n<\/tr>\n
234<\/td>\n71.17.3.3 Design drivers
71.17.3.4 Detailed design <\/td>\n<\/tr>\n
235<\/td>\n71.17.3.5 Standard panel configuration <\/td>\n<\/tr>\n
236<\/td>\n71.17.3.6 Insulation
71.17.3.7 Fittings
71.17.3.8 Mass breakdown <\/td>\n<\/tr>\n
237<\/td>\n71.17.3.9 Verification by analysis <\/td>\n<\/tr>\n
238<\/td>\n71.17.3.10 Panel manufacture
71.17.3.11 Panel testing <\/td>\n<\/tr>\n
241<\/td>\n71.17.3.12 Leading edge element
71.17.4 MIRKA – Micro re-entry capsule
71.17.4.1 General <\/td>\n<\/tr>\n
242<\/td>\n71.17.4.2 Design concept <\/td>\n<\/tr>\n
243<\/td>\n71.17.4.3 Test programme
71.17.4.4 Flight performance
71.17.4.5 Proposed applications
71.17.5 ALSCAP – Alternative low-cost, short-manufacturing-cycle ceramic assessment programme
71.17.5.1 General <\/td>\n<\/tr>\n
244<\/td>\n71.17.5.2 Materials and manufacturing
71.17.5.3 Characterisation and testing <\/td>\n<\/tr>\n
245<\/td>\n71.17.5.4 Programme conclusions <\/td>\n<\/tr>\n
246<\/td>\n71.18 Aeroshell
71.18.1 General
71.18.2 Semi-integrated aeroshell TPS (S.I.A.T)
71.18.3 Demonstrator aeroshell design
71.18.3.1 General <\/td>\n<\/tr>\n
247<\/td>\n71.18.3.2 General architecture <\/td>\n<\/tr>\n
248<\/td>\n71.18.3.3 Thermal <\/td>\n<\/tr>\n
250<\/td>\n71.18.3.4 Critical load cases
71.18.3.5 Material samples test campaigns <\/td>\n<\/tr>\n
251<\/td>\n71.18.3.6 Manufacture
71.18.3.7 Testing <\/td>\n<\/tr>\n
252<\/td>\n71.18.3.8 Conclusions
71.19 Cryogenic tanks
71.19.1 General <\/td>\n<\/tr>\n
253<\/td>\n71.19.2 European programmes
71.19.2.1 FESTIP
71.19.2.2 C-SiC oxidation protection
71.19.2.3 IMI internal multiscreen insulation <\/td>\n<\/tr>\n
254<\/td>\n71.19.2.4 Refractory metals and aluminide oxidation protection
71.19.2.5 ODS alloys
71.19.3 Concepts: TPS panel array
71.19.4 Concepts: LH tank cryogenic insulation <\/td>\n<\/tr>\n
256<\/td>\n71.20 TPS mass budgets
71.20.1 Allocation <\/td>\n<\/tr>\n
257<\/td>\n71.20.2 Examples
71.21 TPS verification
71.22 Polymer foam cryogenic insulation
71.22.1 General
71.22.1.1 Expendable \u2018single-shot\u2019 launchers
71.22.1.2 Reusable launchers
71.22.2 Polymer foam characteristics <\/td>\n<\/tr>\n
258<\/td>\n71.22.3 Properties
71.22.3.1 Mechanical
71.22.3.2 Physical <\/td>\n<\/tr>\n
259<\/td>\n71.22.4 Materials
71.22.4.1 Material selection <\/td>\n<\/tr>\n
260<\/td>\n71.22.4.2 Evaluation
71.22.4.3 Foam structure
71.22.4.4 Foam mechanical properties <\/td>\n<\/tr>\n
261<\/td>\n71.22.5 Ranking of polymer foam cryogenic insulation
71.22.5.1 Criteria <\/td>\n<\/tr>\n
262<\/td>\n71.22.5.2 Summary <\/td>\n<\/tr>\n
263<\/td>\n71.22.6 Further work
71.23 High temperature insulation (HTI)
71.23.1 Background <\/td>\n<\/tr>\n
264<\/td>\n71.23.2 Development factors
71.23.2.1 Objectives
71.23.2.2 Technology-related
71.23.2.3 Technical-related <\/td>\n<\/tr>\n
265<\/td>\n71.23.2.4 Configuration-related
71.23.3 Development apoproach
71.23.3.1 Test philosophy and plan <\/td>\n<\/tr>\n
268<\/td>\n71.23.4 Materials
71.23.5 Testing
71.23.5.1 General
71.23.5.2 Thermal stability <\/td>\n<\/tr>\n
269<\/td>\n71.23.5.3 Material selection based on thermal stability <\/td>\n<\/tr>\n
270<\/td>\n71.23.5.4 Temperature gradient test <\/td>\n<\/tr>\n
272<\/td>\n71.23.6 Summary
71.24 References
71.24.1.1 General <\/td>\n<\/tr>\n
282<\/td>\n72 SPF\/DB titanium designs
72.1 Introduction
72.1.1 General
72.1.2 Aircraft components
72.1.3 Space applications <\/td>\n<\/tr>\n
283<\/td>\n72.2 Basic SPF\/DB process
72.2.1 Superplastic forming
72.2.2 Diffusion bonding <\/td>\n<\/tr>\n
285<\/td>\n72.3 Process attributes <\/td>\n<\/tr>\n
286<\/td>\n72.4 Titanium alloys <\/td>\n<\/tr>\n
287<\/td>\n72.5 Aluminium alloys <\/td>\n<\/tr>\n
288<\/td>\n72.6 Access doors and ducting
72.6.1 General
72.6.2 Slat track\/jack cans <\/td>\n<\/tr>\n
289<\/td>\n72.6.3 Underwing access doors <\/td>\n<\/tr>\n
290<\/td>\n72.6.4 Other SPF\/DB components
72.7 Spars and stiffened panels <\/td>\n<\/tr>\n
291<\/td>\n72.8 Struts and cylinders
72.9 Leading edges and lateral fins <\/td>\n<\/tr>\n
292<\/td>\n72.10 Firewalls
72.11 Pressure vessels <\/td>\n<\/tr>\n
293<\/td>\n72.12 Cost aspects
72.13 European facilities
72.14 References
72.14.1 General <\/td>\n<\/tr>\n
295<\/td>\n73 Propulsion technologies
73.1 Introduction
73.2 Propulsion unit requirements
73.2.1 Launcher engines
73.2.1.1 Ariane 5 single mission launcher
73.2.2 Shuttle engines
73.2.3 Spaceplane engines <\/td>\n<\/tr>\n
296<\/td>\n73.2.4 Thrusters
73.2.5 Nozzles
73.3 Fuels
73.3.1 General
73.3.2 Solid propellants
73.3.3 LH\/LOX <\/td>\n<\/tr>\n
297<\/td>\n73.3.4 Monopropellants
73.3.5 Bipropellants
73.4 Ariane 5
73.4.1 General
73.4.2 MPS solid rocket motor
73.4.2.1 General <\/td>\n<\/tr>\n
298<\/td>\n73.4.2.2 MPS specification
73.5 Vulcain engine
73.5.1 General <\/td>\n<\/tr>\n
299<\/td>\n73.5.2 Specification
73.5.3 Materials <\/td>\n<\/tr>\n
300<\/td>\n73.6 HM 7 engine
73.6.1 General <\/td>\n<\/tr>\n
301<\/td>\n73.6.2 Nozzle geometry
73.7 Mage 2 motor
73.8 Nozzles <\/td>\n<\/tr>\n
302<\/td>\n73.9 Space Shuttle Main Engine (SSME)
73.10 Air breathing engines
73.10.1 General <\/td>\n<\/tr>\n
303<\/td>\n73.10.2 NASP nozzle development
73.10.3 European ramjet technology
73.11 CMC rocket stator <\/td>\n<\/tr>\n
305<\/td>\n73.12 Metal thrusters
73.13 CMC thrusters
73.14 References
73.14.1 General <\/td>\n<\/tr>\n
308<\/td>\n74 Protective coatings
74.1 Introduction <\/td>\n<\/tr>\n
309<\/td>\n74.2 Coating functions
74.2.1 General <\/td>\n<\/tr>\n
310<\/td>\n74.2.2 Application requirements
74.2.2.1 Spaceplane aerodynamic re-entry surfaces
74.2.2.2 Propulsion systems
74.3 Passivation
74.3.1 General <\/td>\n<\/tr>\n
311<\/td>\n74.3.2 Materials
74.3.3 Coating adhesion <\/td>\n<\/tr>\n
312<\/td>\n74.4 Basic coating types
74.4.1 General
74.4.2 Diffusion coatings
74.4.3 Overlay coatings
74.4.3.1 General
74.4.3.2 MCrAlY type
74.4.3.3 Thermal barrier coatings (TBC) <\/td>\n<\/tr>\n
313<\/td>\n74.5 Coating processes
74.5.1 General
74.5.2 Slurry coating
74.5.2.1 General\u00b4
74.5.2.2 Applications
74.5.3 Physical vapour deposition (PVD)
74.5.3.1 General <\/td>\n<\/tr>\n
314<\/td>\n74.5.3.2 Applications
74.5.4 Enhanced physical vapour deposition (PVD)
74.5.5 Thermal spraying
74.5.5.1 General
74.5.5.2 Applications
74.5.6 Chemical vapour deposition (CVD)
74.5.6.1 General <\/td>\n<\/tr>\n
315<\/td>\n74.5.6.2 Applications
74.5.7 Enhanced chemical vapour deposition (CVD)
74.5.8 Other processes <\/td>\n<\/tr>\n
316<\/td>\n74.6 Coatings: Titanium components
74.6.1 NASP
74.6.1.1 General
74.6.1.2 Reactive slurry coatings
74.6.1.3 Multi-layer glass coatings
74.7 Coatings: Superalloy components
74.7.1 General <\/td>\n<\/tr>\n
317<\/td>\n74.7.2 Aluminide diffusion coatings
74.7.3 MCrAlY overlay coatings
74.7.3.1 General
74.7.3.2 Oxidation resistance <\/td>\n<\/tr>\n
318<\/td>\n74.7.3.3 Hot corrosion
74.8 Thermal barrier coatings (TBC)
74.8.1 Ni-based superalloy components
74.8.1.1 General
74.8.1.2 Coating formulation
74.8.1.3 Coating application
74.8.2 Shuttle Main Engine HPFTP blades <\/td>\n<\/tr>\n
319<\/td>\n74.8.3 Fibre-reinforced TBC’s
74.8.4 Coating technology
74.8.5 Seals
74.9 Carbon-Carbon: Oxidation protection
74.9.1 General
74.9.2 Applications
74.9.3 Coating systems <\/td>\n<\/tr>\n
320<\/td>\n74.9.4 Basic problem
74.10 Multiplex coatings
74.10.1 General <\/td>\n<\/tr>\n
321<\/td>\n74.10.2 Constituents
74.10.2.1 Inhibited C-C substrate
74.10.2.2 Surface treatment
74.10.2.3 Primary oxidation barrier <\/td>\n<\/tr>\n
322<\/td>\n74.10.2.4 Outer glaze
74.10.3 Application examples
74.10.3.1 Buran and Space Shuttle
74.10.3.2 Hermes <\/td>\n<\/tr>\n
323<\/td>\n74.10.3.3 NASP
74.11 Coatings: C-SiC and SiC-SiC
74.11.1 General
74.11.2 C-SiC
74.11.3 SiC-SiC <\/td>\n<\/tr>\n
324<\/td>\n74.12 Carbon-Carbon: Surface coatings
74.12.1 Dimensionally stable structures
74.12.1.1 General <\/td>\n<\/tr>\n
325<\/td>\n74.12.1.2 Types of coatings <\/td>\n<\/tr>\n
326<\/td>\n74.12.1.3 Reflective coating deposition methods <\/td>\n<\/tr>\n
327<\/td>\n74.12.1.4 Reflective coating quality
74.12.1.5 Coated DSS manufacturing methods <\/td>\n<\/tr>\n
328<\/td>\n74.13 References
74.13.1 General <\/td>\n<\/tr>\n
332<\/td>\n75 Seal technology
75.1 Introduction
75.1.1 Uses
75.1.2 Structural assemblies <\/td>\n<\/tr>\n
333<\/td>\n75.1.3 Dynamic seals
75.1.4 Materials
75.2 Structural seals <\/td>\n<\/tr>\n
334<\/td>\n75.3 Seal materials
75.3.1 General
75.3.2 Elastomers
75.3.2.1 Essential characteristics <\/td>\n<\/tr>\n
335<\/td>\n75.3.2.2 Crosslinking
75.3.2.3 Temperature effects and glass transition <\/td>\n<\/tr>\n
337<\/td>\n75.3.3 Types of elastomers
75.3.3.1 Formulation
75.3.3.2 Base elastomer-types and characteristics <\/td>\n<\/tr>\n
338<\/td>\n75.3.3.3 Tensile <\/td>\n<\/tr>\n
339<\/td>\n75.3.3.4 Fluid resistance: Liquids <\/td>\n<\/tr>\n
340<\/td>\n75.3.3.5 Fluid resistance: Gases
75.3.3.6 Thermal cycling <\/td>\n<\/tr>\n
341<\/td>\n75.3.3.7 Radiation
75.3.3.8 Vacuum
75.3.4 Visoelasticity <\/td>\n<\/tr>\n
342<\/td>\n75.3.5 Physical properties
75.3.5.1 General <\/td>\n<\/tr>\n
343<\/td>\n75.3.5.2 Hardness and elastic modulus
75.3.5.3 Tensile strength and elongation at break <\/td>\n<\/tr>\n
344<\/td>\n75.3.5.4 Tear strength
75.3.5.5 Resilience and dynamic properties <\/td>\n<\/tr>\n
346<\/td>\n75.3.5.6 Compression set
75.3.5.7 Physical creep and stress relaxation <\/td>\n<\/tr>\n
349<\/td>\n75.3.6 Chemical properties
75.3.6.1 Heat resistance <\/td>\n<\/tr>\n
350<\/td>\n75.3.6.2 Low temperature resistance <\/td>\n<\/tr>\n
351<\/td>\n75.3.6.3 Chemical resistance <\/td>\n<\/tr>\n
352<\/td>\n75.3.7 Rubber-to-metal bonding <\/td>\n<\/tr>\n
353<\/td>\n75.3.8 Engineering design with elastomers
75.3.8.1 Fundemental aspects
75.3.8.2 Shear stiffness of simple blocks
75.3.8.3 Compression stiffness of simple blocks <\/td>\n<\/tr>\n
355<\/td>\n75.3.8.4 Compression stiffness of laminated blocks
75.3.8.5 Torsion stiffness <\/td>\n<\/tr>\n
356<\/td>\n75.3.9 Finite element analysis <\/td>\n<\/tr>\n
358<\/td>\n75.3.10 Applications
75.3.10.1 General
75.3.10.2 Vibration isolation
75.3.10.3 Seals <\/td>\n<\/tr>\n
359<\/td>\n75.3.11 Thermoplastic elastomers
75.4 Energised metal seals
75.4.1 General <\/td>\n<\/tr>\n
360<\/td>\n75.4.2 Materials <\/td>\n<\/tr>\n
361<\/td>\n75.5 NASP engine developments
75.5.1 General
75.5.2 Developments
75.5.2.1 Ceramic Wafer Seal <\/td>\n<\/tr>\n
362<\/td>\n75.5.2.2 Braided Ceramic Rope Seal
75.5.2.3 ‘V’-ring and ‘U’-ring Seals
75.6 Fibrous seals <\/td>\n<\/tr>\n
363<\/td>\n75.7 Elastomeric seals
75.7.1 Materials
75.7.1.1 General
75.7.1.2 Aerospace
75.7.2 Design aspects <\/td>\n<\/tr>\n
364<\/td>\n75.7.3 Causes of leakage
75.7.3.1 Static seals
75.7.3.2 Pressure-energised seals
75.7.3.3 Effect of temperature
75.7.3.4 Effect of pressure <\/td>\n<\/tr>\n
365<\/td>\n75.7.3.5 Changes in fluids
75.7.3.6 Explosive decompression
75.7.3.7 Testing aspects
75.7.4 Aerospace applications <\/td>\n<\/tr>\n
366<\/td>\n75.8 References
75.8.1 General <\/td>\n<\/tr>\n
367<\/td>\n75.8.2 ECSS standards <\/td>\n<\/tr>\n
368<\/td>\n75.8.3 ASTM standards
75.8.4 ISO standards <\/td>\n<\/tr>\n
369<\/td>\n76 Integrity control of high temperature structures
76.1 Introduction
76.2 Materials
76.2.1 Integrity control <\/td>\n<\/tr>\n
370<\/td>\n76.2.2 Fracture control
76.3 Failure characteristics
76.3.1 Advanced alloy systems
76.3.2 Composite materials
76.3.2.1 General
76.3.2.2 Metal matrix
76.3.2.3 Glass and ceramic matrix
76.3.2.4 Fibre-to-matrix interface <\/td>\n<\/tr>\n
371<\/td>\n76.4 High temperature
76.5 Coatings
76.5.1 General
76.5.2 Manufacturing
76.5.3 Inspection <\/td>\n<\/tr>\n
372<\/td>\n76.6 Considerations
76.6.1 Mass optimisation
76.6.2 Approach
76.6.2.1 General
76.6.2.2 New materials <\/td>\n<\/tr>\n
373<\/td>\n76.7 Case study: Developments in integrity control <\/td>\n<\/tr>\n
375<\/td>\n76.8 Case study: Phase 1 – Material characterisation
76.8.1 General
76.8.2 Materials, manufacturing and NDT
76.8.2.1 General
76.8.2.2 Carbon-Carbon
76.8.2.3 C-SiC and SiC-SiC
76.8.2.4 Introduced defects <\/td>\n<\/tr>\n
376<\/td>\n76.8.3 Defect detection by selected NDI methods
76.8.3.1 General
76.8.3.2 Green part
76.8.3.3 Final pyrolysed high temperature composite
76.8.3.4 Protective coatings <\/td>\n<\/tr>\n
377<\/td>\n76.8.3.5 Unsuccessful techniques
76.8.4 Maximum applied stresses <\/td>\n<\/tr>\n
378<\/td>\n76.8.5 High-temperature tests
76.8.5.1 Test regime
76.8.5.2 Four point bending tests <\/td>\n<\/tr>\n
379<\/td>\n76.8.6 Residual strengths
76.8.6.1 SiC-SiC
76.8.6.2 C-SiC
76.8.6.3 C-C
76.8.7 Analysis
76.8.8 Conclusions <\/td>\n<\/tr>\n
380<\/td>\n76.9 Case study: Phase 2 – Structural sub-component behaviour
76.10 References
76.10.1 General <\/td>\n<\/tr>\n
381<\/td>\n77 Defect types
77.1 Introduction <\/td>\n<\/tr>\n
382<\/td>\n77.2 Advanced metal alloys
77.2.1 General
77.2.2 ODS alloys
77.2.3 SPF alloys
77.3 Metal matrix composites
77.3.1 General
77.3.2 Standard product forms <\/td>\n<\/tr>\n
383<\/td>\n77.3.3 Near-net shape manufacture <\/td>\n<\/tr>\n
384<\/td>\n77.4 Ceramic matrix composites
77.5 Coatings <\/td>\n<\/tr>\n
385<\/td>\n77.6 Joints
77.6.1 General
77.6.2 Uses <\/td>\n<\/tr>\n
386<\/td>\n77.6.3 Mechanical fastened joints
77.6.4 Fusion joints <\/td>\n<\/tr>\n
387<\/td>\n77.7 Structural parts
77.7.1 General
77.7.2 Composite materials
77.7.2.1 Shaping and machining
77.7.2.2 Near-net shape manufacture
77.8 In service <\/td>\n<\/tr>\n
389<\/td>\n77.9 References
77.9.1 General <\/td>\n<\/tr>\n
390<\/td>\n78 Damage tolerance
78.1 Introduction
78.1.1 Materials
78.1.2 Structure
78.1.3 Fracture mechanics
78.1.4 Initial material quality (IMQ) <\/td>\n<\/tr>\n
391<\/td>\n78.2 MMC: Particulate and whisker reinforced
78.2.1 Fatigue behaviour
78.2.1.1 General <\/td>\n<\/tr>\n
392<\/td>\n78.2.1.2 Particulate size
78.2.2 Fracture mechanics <\/td>\n<\/tr>\n
393<\/td>\n78.3 CMC: Whisker reinforced
78.4 MMC: Continuous fibre reinforced
78.4.1 Fatigue
78.4.1.1 General <\/td>\n<\/tr>\n
394<\/td>\n78.4.1.2 Single crack failures
78.4.1.3 Matrix failure <\/td>\n<\/tr>\n
395<\/td>\n78.5 CMC: Continuous fibre reinforced
78.5.1 Failure characteristics
78.5.1.1 General
78.5.1.2 Fibre to matrix interface <\/td>\n<\/tr>\n
396<\/td>\n78.5.1.3 Fracture characterisation
78.6 Coatings
78.6.1 Coating performance <\/td>\n<\/tr>\n
397<\/td>\n78.6.2 Process and material selection
78.6.2.1 General
78.6.2.2 Microstructure
78.6.3 Failure characteristics <\/td>\n<\/tr>\n
398<\/td>\n78.7 References
78.7.1 General
78.7.2 ECSS standards <\/td>\n<\/tr>\n
399<\/td>\n79 Fracture control
79.1 Introduction
79.1.1 Application
79.1.1.1 Alloys
79.1.1.2 Brittle materials
79.2 References
79.2.1 General
79.2.2 ECSS standards <\/td>\n<\/tr>\n
400<\/td>\n80 NDT techniques
80.1 Introduction <\/td>\n<\/tr>\n
401<\/td>\n80.2 Advanced metal alloys
80.2.1 General
80.2.2 Brittle materials
80.2.3 Multi-phase microstructures
80.3 Metal matrix composites <\/td>\n<\/tr>\n
402<\/td>\n80.4 Carbon-Carbon and ceramic matrix composites <\/td>\n<\/tr>\n
405<\/td>\n80.5 Coatings
80.6 Joints
80.6.1 General
80.6.2 Fused joints <\/td>\n<\/tr>\n
406<\/td>\n80.6.3 Mechanically fastened and interlock joints
80.6.3.1 TPS structures
80.6.3.2 Thrusters and nozzles
80.7 Fusion joints
80.7.1 General
80.7.2 Thin-walled seam welded tubes <\/td>\n<\/tr>\n
407<\/td>\n80.7.3 Diffusion bonded joints
80.8 References
80.8.1 General <\/td>\n<\/tr>\n
410<\/td>\n81 High-temperature testing
81.1 Introduction
81.2 Purpose of testing <\/td>\n<\/tr>\n
411<\/td>\n81.3 Material behaviour
81.3.1 Basic fracture modes
81.3.2 Metal matrix composites
81.3.2.1 Particulate reinforced (MMCp)
81.3.2.2 Fibre reinforced (MMCf)
81.3.3 Inorganic and ceramic matrix composites
81.3.3.1 Fibre reinforced (ICMCf) <\/td>\n<\/tr>\n
412<\/td>\n81.4 Degradation mechanisms
81.4.1 Materials
81.4.1.1 Metal compositions
81.4.1.2 Ceramic compositions
81.4.2 Degradation rate <\/td>\n<\/tr>\n
413<\/td>\n81.5 Coupon testing
81.5.1 General
81.5.2 Single-fibre tests
81.5.3 Fibre push through
81.5.4 Net-shape components
81.5.5 Flexural and ILSS testing <\/td>\n<\/tr>\n
414<\/td>\n81.5.6 Small coupon tests
81.5.7 Machining
81.5.8 Extensometry <\/td>\n<\/tr>\n
415<\/td>\n81.5.9 End tabs
81.5.10 Coatings
81.5.11 Material gradation
81.5.12 Specimen alignment
81.5.13 Linear elasticity
81.6 Mechanical properties
81.6.1 General <\/td>\n<\/tr>\n
416<\/td>\n81.6.2 Tensile
81.6.2.1 General
81.6.2.2 Particulate reinforced composite
81.6.2.3 Continuous fibre-reinforced composites <\/td>\n<\/tr>\n
417<\/td>\n81.6.3 Compression
81.6.3.1 Continuous fibre-reinforced composites <\/td>\n<\/tr>\n
418<\/td>\n81.6.4 Shear
81.6.5 Open-hole tension
81.6.6 Fatigue
81.7 Fracture toughness <\/td>\n<\/tr>\n
419<\/td>\n81.8 Physical properties
81.8.1 General
81.8.2 Standards
81.9 Status of test standards
81.9.1 General <\/td>\n<\/tr>\n
420<\/td>\n81.9.2 Metal matrix composites
81.9.3 Ceramic matrix composites
81.9.3.1 CEN TC 184 activities <\/td>\n<\/tr>\n
421<\/td>\n81.9.3.2 Continuous fibre reinforced ceramic composites
81.9.3.3 Short fibre reinforced ceramic composites
81.9.3.4 Ceramic coatings
81.9.3.5 Other properties <\/td>\n<\/tr>\n
424<\/td>\n81.10 Demonstrator testing <\/td>\n<\/tr>\n
425<\/td>\n81.11 References
81.11.1 General <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Space engineering. Structural materials handbook – Fracture and material modelling, case studies and design and integrity control and inspection<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2022<\/td>\n426<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":402830,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2641],"product_tag":[],"class_list":{"0":"post-402821","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-bsi","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/402821","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/402830"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=402821"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=402821"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=402821"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}