{"id":416610,"date":"2024-10-20T06:11:42","date_gmt":"2024-10-20T06:11:42","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-iec-tr-63401-12022\/"},"modified":"2024-10-26T11:30:23","modified_gmt":"2024-10-26T11:30:23","slug":"bs-iec-tr-63401-12022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-iec-tr-63401-12022\/","title":{"rendered":"BS IEC TR 63401-1:2022"},"content":{"rendered":"

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
8<\/td>\nFOREWORD <\/td>\n<\/tr>\n
10<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
11<\/td>\n1 Scope <\/td>\n<\/tr>\n
12<\/td>\n2 Normative references
3 Terms and definitions <\/td>\n<\/tr>\n
14<\/td>\n4 Characteristics of low short circuit ratio AC networks
4.1 Definition of low short circuit ratio
4.1.1 General <\/td>\n<\/tr>\n
15<\/td>\n4.1.2 Low SCR in IEEE Std 1204-1997
4.1.3 Low SCR in CIGRE B4.62 TB671 <\/td>\n<\/tr>\n
17<\/td>\n4.2 Stability issues posed by inverter-based resources
4.2.1 General
Figures
Figure 1 \u2013 Measured voltage and current curves of sub-synchronous oscillation <\/td>\n<\/tr>\n
18<\/td>\n4.2.2 Static voltage control
4.2.3 Fault ride-through
4.2.4 Multi-frequency oscillation <\/td>\n<\/tr>\n
19<\/td>\n4.3 Summary
5 Identification of low short circuit ratio AC networks
5.1 Problem statement <\/td>\n<\/tr>\n
20<\/td>\n5.2 Short circuit ratio for a single-connected REPP system
5.2.1 SCR calculation with fault current <\/td>\n<\/tr>\n
21<\/td>\n5.2.2 SCR calculation with equivalent circuit
Figure 2 \u2013 Schematic diagram of a WPP with no static or dynamic reactive support <\/td>\n<\/tr>\n
22<\/td>\nFigure 3 \u2013 Equivalent circuit representation of the WPP shown in Figure 2 <\/td>\n<\/tr>\n
26<\/td>\nFigure 4 \u2013 A typical SIPES
Figure 5 \u2013 Changes of system eigenvalues, and the weakest system eigenvalue\u2019s damping ratio with SCR in a SIPES <\/td>\n<\/tr>\n
27<\/td>\nFigure 6 \u2013 Schematic diagram of a WPP with static reactivesupport plant (capacitor banks)
Figure 7 \u2013 Equivalent circuit representation of the WPP shown in Figure 6 <\/td>\n<\/tr>\n
28<\/td>\n5.3 Short circuit ratio for multi grid-connected WPP system
5.3.1 General
Figure 8 \u2013 Schematic diagram of a WPP with dynamic reactivesupport plant (synchronous condensers)
Figure 9 \u2013 Equivalent circuit representation of the WPP shown in Figure 8 <\/td>\n<\/tr>\n
29<\/td>\n5.3.2 Modal decoupling method <\/td>\n<\/tr>\n
30<\/td>\nFigure 10 \u2013 Mechanism illustration of decoupling a MIPESinto a set of equivalent SIPESs <\/td>\n<\/tr>\n
31<\/td>\nFigure 11 \u2013 A typical MIPES <\/td>\n<\/tr>\n
35<\/td>\nFigure 12 \u2013 A test wind farm system that contains nine wind turbines <\/td>\n<\/tr>\n
37<\/td>\nFigure 13 \u2013 One-line diagram of 5-infeed PES
Tables
Table 1 \u2013 Rated capacity of PEDs in 5-infeed PES in p.u. <\/td>\n<\/tr>\n
38<\/td>\nFigure 14 \u2013 Eigenvalue comparison of 5-infeed PES and its 5 equivalent SIPESs
Table 2 \u2013 Network parameters of 5-infeed PES in p.u.
Table 3 \u2013 Relationship between equivalent SIPESs and eigenvaluesof Yeq in 5-infeed PES <\/td>\n<\/tr>\n
39<\/td>\nFigure 15 \u2013 The 9-converter heterogeneous system with a IEEE 39-bus network topology
Table 4 \u2013 Control parameters of converters <\/td>\n<\/tr>\n
40<\/td>\n5.3.3 Circuit aggregation method
Figure 16 \u2013 The dominant eigenvalues and the damping ratios <\/td>\n<\/tr>\n
41<\/td>\nFigure 17 \u2013 Nearby WPP connected to the same region in a power system <\/td>\n<\/tr>\n
42<\/td>\nFigure 18 \u2013 Equivalent representation of multiple windfarmsconnecting to a power system with its Z matrix <\/td>\n<\/tr>\n
43<\/td>\nFigure 19 \u2013 Equivalent circuit representation of two WPPs connectedto the same connection point-configuration 2 <\/td>\n<\/tr>\n
44<\/td>\nFigure 20 \u2013 Four WPPs integrated into the system with weak connections
Table 5 \u2013 Wind capacity and SCR values assuming no interaction <\/td>\n<\/tr>\n
45<\/td>\nFigure 21 \u2013 Multiple WPPs connecting to the same HV busor HV buses in close proximity
Figure 22 \u2013 Equivalent circuit representation of WPPs connecting to the same HV bus
Figure 23 \u2013 Approximate equivalent representation assumed for CSCR method <\/td>\n<\/tr>\n
47<\/td>\n5.4 Summary
Table 6 \u2013 The definition of different MISCRs <\/td>\n<\/tr>\n
48<\/td>\nTable 7 \u2013 Comparison of SCR methods <\/td>\n<\/tr>\n
49<\/td>\n6 Steady state voltage stability issue for low short circuit ratio AC networks
6.1 Problem statements
6.2 Steady state stability analysis method
6.2.1 P-V curve
Figure 24 \u2013 System topology
Figure 25 \u2013 Typical P-V curve <\/td>\n<\/tr>\n
50<\/td>\n6.2.2 Q-V curve
Figure 26 \u2013 System topology
Figure 27 \u2013 Typical Q-V curve <\/td>\n<\/tr>\n
51<\/td>\n6.2.3 Voltage sensitivity analysis
Figure 28 \u2013 Simplified equivalent circuit oflarge-scale wind power integration system <\/td>\n<\/tr>\n
53<\/td>\nFigure 29 \u2013 Voltage sensitivity at PCC of large-scale wind power integration system <\/td>\n<\/tr>\n
54<\/td>\nFigure 30 \u2013 Single generator connected to an infinite bus via grid impedance <\/td>\n<\/tr>\n
55<\/td>\nFigure 31 \u2013 P-V curves for a typical generator in a weak grid <\/td>\n<\/tr>\n
56<\/td>\n6.2.4 Relation to short circuit ratio <\/td>\n<\/tr>\n
58<\/td>\n6.3 Control strategy for inverter-based resource
6.3.1 Active power and reactive power control <\/td>\n<\/tr>\n
60<\/td>\n6.3.2 Voltage control
Figure 32 \u2013 Power limit curve of DFIG <\/td>\n<\/tr>\n
61<\/td>\n6.4 Case study
6.4.1 Steady state voltage stability problem \u2013 China
Figure 33 \u2013 Voltage control block diagram of the doubly-fed wind turbine
Figure 34 \u2013 Network structure of Baicheng grid <\/td>\n<\/tr>\n
62<\/td>\nFigure 35 \u2013 Short circuit capacity of Baicheng network <\/td>\n<\/tr>\n
63<\/td>\nFigure 36 \u2013 P-V curves and V-Q curves
Table 8 \u2013 Wind farm\u2019s maximum power under different conditions <\/td>\n<\/tr>\n
64<\/td>\n6.4.2 Low SCR interconnection experience \u2013 Vestas
Figure 37 \u2013 Reactive power of the wind farm and voltage level at the PCC <\/td>\n<\/tr>\n
65<\/td>\n6.5 Summary
Figure 38 \u2013 Schematic representation of the study system <\/td>\n<\/tr>\n
66<\/td>\n7 Transient issue for low short circuit ratio AC networks
7.1 Problem statement
Figure 39 \u2013 Fault characteristics <\/td>\n<\/tr>\n
67<\/td>\n7.2 Transient characteristic modelling and analysis
7.2.1 Transient stability analysis tools and limitations <\/td>\n<\/tr>\n
68<\/td>\n7.2.2 Electromagnetic transient (EMT) type models
Figure 40 \u2013 Comparison of VER fault response betweentransient stability and EMT models <\/td>\n<\/tr>\n
69<\/td>\n7.2.3 Transient stability analysis model requirements
7.3 Fault ride-through protection and control issue
7.3.1 General <\/td>\n<\/tr>\n
70<\/td>\n7.3.2 Hardware protection of inverter-based resource during fault <\/td>\n<\/tr>\n
71<\/td>\nFigure 41 \u2013 Doubly-fed wind turbine rotor-side crowbar protection circuit topology <\/td>\n<\/tr>\n
73<\/td>\n7.3.3 Unbalancing-voltage ride-through issue <\/td>\n<\/tr>\n
74<\/td>\nFigure 42 \u2013 Schematic diagram of positive and negative sequence currentcontrol of DFIG converter under grid unbalanced fault <\/td>\n<\/tr>\n
75<\/td>\n7.3.4 Overvoltage ride-through control strategy
Figure 43 \u2013 Comparative analysis of simulation results <\/td>\n<\/tr>\n
76<\/td>\nFigure 44 \u2013 Overvoltage ride-through control flow diagram <\/td>\n<\/tr>\n
77<\/td>\n7.3.5 Multiple fault ride-through
Figure 45 \u2013 Multiple fault conditions <\/td>\n<\/tr>\n
78<\/td>\nFigure 46 \u2013 Pitch angle control strategy <\/td>\n<\/tr>\n
79<\/td>\nFigure 47 \u2013 Typical characteristics of Pm and Pe under multiple fault ride-through <\/td>\n<\/tr>\n
80<\/td>\n7.3.6 Under and over -voltage ride-through in time sequence
Figure 48 \u2013 Characteristics of Pm and Pe under multiple fault ride-through
Figure 49 \u2013 Under\/overvoltage ride-through curve <\/td>\n<\/tr>\n
81<\/td>\n7.3.7 Active\/reactive current support of inverter-based resource during fault <\/td>\n<\/tr>\n
82<\/td>\n7.4 Operating experiences
7.4.1 Operating experience \u2013 China
Figure 50 \u2013 Circuit diagram in Jiuquan <\/td>\n<\/tr>\n
83<\/td>\n7.4.2 Operating experience
Figure 51 \u2013 Analysis of wind power disconnection incident <\/td>\n<\/tr>\n
84<\/td>\nFigure 52 \u2013 Demonstration of voltage regulation performanceduring variable power output conditions <\/td>\n<\/tr>\n
85<\/td>\n7.5 Summary
8 Oscillatory instability issue for low short circuit ratio AC networks
8.1 Problem statement
Table 9 \u2013 New oscillation issues of power systems in the world <\/td>\n<\/tr>\n
87<\/td>\nFigure 53 \u2013 Configuration of a system of multiple grid-tied VSIs <\/td>\n<\/tr>\n
88<\/td>\n8.2 Modelling and stability analysis
8.2.1 Analysis and modelling of the inverter in the time-domain
8.2.2 Analysis and modelling of the inverter in the frequency-domain <\/td>\n<\/tr>\n
89<\/td>\nFigure 54 \u2013 Control schematic diagram and structure of inverter <\/td>\n<\/tr>\n
91<\/td>\nTable 10 \u2013 Detailed influence frequency ranges of every loop <\/td>\n<\/tr>\n
92<\/td>\nFigure 55 \u2013 Frequency coupling in different frequency range <\/td>\n<\/tr>\n
93<\/td>\nFigure 56 \u2013 Negative resistor caused by PLL <\/td>\n<\/tr>\n
94<\/td>\nFigure 57 \u2013 Negative resistor caused by DVC <\/td>\n<\/tr>\n
95<\/td>\n8.3 Mitigation of the oscillation issues by active damping control
Figure 58 \u2013 Equivalent circuits of the LC-filter considering the virtual resistor
Table 11 \u2013 Approximate distribution of high frequency negative damping range <\/td>\n<\/tr>\n
96<\/td>\n8.4 Cases study based on the benchmark model
Figure 59 \u2013 Active damping control methods <\/td>\n<\/tr>\n
97<\/td>\nFigure 60 \u2013 Impact of virtual resistance control on the stability <\/td>\n<\/tr>\n
98<\/td>\nTable 12 \u2013 Typical cases of weak grid parameters <\/td>\n<\/tr>\n
99<\/td>\nFigure 61 \u2013 Impact of line length on the stability <\/td>\n<\/tr>\n
100<\/td>\nFigure 62 \u2013 Impact of PLL on the stability <\/td>\n<\/tr>\n
101<\/td>\n8.5 Summary
Figure 63 \u2013 Impact of current control loop on the stability <\/td>\n<\/tr>\n
102<\/td>\n9 Conclusions <\/td>\n<\/tr>\n
103<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Dynamic characteristics of inverter-based resources in bulk power systems – Interconnecting inverter-based resources to low short circuit ratio AC networks<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2022<\/td>\n104<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":416619,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2641],"product_tag":[],"class_list":{"0":"post-416610","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-bsi","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/416610","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/416619"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=416610"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=416610"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=416610"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}