{"id":422172,"date":"2024-10-20T06:39:58","date_gmt":"2024-10-20T06:39:58","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-61850-90-122020-2\/"},"modified":"2024-10-26T12:28:35","modified_gmt":"2024-10-26T12:28:35","slug":"bsi-pd-iec-tr-61850-90-122020-2","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-61850-90-122020-2\/","title":{"rendered":"BSI PD IEC TR 61850-90-12:2020"},"content":{"rendered":"
This part of IEC 61850, which is a Technical Report, is intended for an audience familiar with electrical power automation based on IEC 61850 and related power system management, and particularly for data network engineers and system integrators. It is intended to help them to understand the technologies, configure a wide area network, define requirements, write specifications, select components, and conduct tests.<\/p>\n
This document provides definitions, guidelines, and recommendations for the engineering of WANs, in particular for protection, control and monitoring based on IEC 61850 and related standards.<\/p>\n
This document addresses substation-to-substation communication, substation-to-control centre, and control centre-to-control centre communication. In particular, this document addresses the most critical aspects of IEC 61850 such as protection related data transmission via GOOSE and SMVs, and the multicast transfer of large volumes of synchrophasor data.<\/p>\n
The document addresses issues such as topology, redundancy, traffic latency and quality of service, traffic management, clock synchronization, security, and maintenance of the network.<\/p>\n
This document contains use cases that show how utilities tackle their WAN engineering.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 3 Terms, definitions, abbreviated terms, acronyms, and symbols 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 3.2 Abbreviated terms and acronyms <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 3.3 Network diagram symbols <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Figures Figure 1 \u2013 Symbols <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 4 Wide area communication in electrical utilities 4.1 Executive summary <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 4.2 Network and application example: ENDESA, Andalusia (Spain) Figure 2 \u2013 Substation locations in Andalusia <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 3 \u2013 Topology of the Andalusia network <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 4.3 Typical interface between a substation and the WAN Figure 4 \u2013 Cabinet of a substation edge node <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 4.4 WAN characteristics and actors Figure 5 \u2013 Communication interfaces in a SEN <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 4.5 Smart Grid Architecture Model (SGAM) Mapping Figure 6 \u2013 Communicating entities <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 7 \u2013 SGAM communication model <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 4.6 Network elements and voltage level Figure 8 \u2013 Principle of grid voltage level and network technology <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 4.7 WAN interfaces in substation automation (IEC 61850-5) Figure 9 \u2013 Communication paths and interfaces <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 4.8 Logical interfaces and protocols in the architecture in IEC TR 62357-200 Figure 10 \u2013 IEC TR 62357 Interfaces, protocols, and applications <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 4.9 Network traffic and ownership <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 5 WAN metrics 5.1 Traffic types 5.2 Quality of Service (QoS) of TDM and PSN 5.3 Latency calculation 5.3.1 Latency components <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 5.3.2 Propagation delay 5.3.3 Residence delay 5.3.4 Latency accumulation 5.3.5 Example: latency of a microwave system Figure 11 \u2013 Composition of end-to-end latency in a microwave relay <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 5.3.6 Latency and determinism 5.3.7 Latency classes in IEC 61850-5 Figure 12 \u2013 Example of latency in function of traffic <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Tables Table 1 \u2013 Latency classes in IEC 61850-5 Table 2 \u2013 Latency classes in IEC TR 61850-90-1 <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 5.4 Jitter 5.4.1 Jitter definition Figure 13 \u2013 Jitter for two communication delay types Table 3 \u2013 Latency classes for WANs <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 5.4.2 Jitter classes in IEC 61850 5.5 Latency symmetry and path congruency 5.6 Medium asymmetry Table 4 \u2013 Jitter classes in IEC TR 61850-90-1 Table 5 \u2013 Jitter classes for WAN <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 5.7 Communication speed symmetry 5.8 Recovery delay 5.9 Time accuracy 5.9.1 Time accuracy definition Table 6 \u2013 Recovery delay classes for WAN <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 5.9.2 Time accuracy classes Figure 14 \u2013 Precision and accuracy definitions Table 7 \u2013 IEC TR 61850-90-1 time accuracy classes <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 5.10 Tolerance against failures 5.10.1 Failure Table 8 \u2013 IEC 61850-5 time accuracy classes for IED synchronization Table 9 \u2013 WAN time synchronization classes <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 5.10.2 Reliability 5.10.3 Redundancy principles <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 5.10.4 Redundancy and reliability Figure 15 \u2013 Redundancy of redundant systems <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 5.10.5 Redundancy checking 5.10.6 Redundant layout: single point of failure Figure 16 \u2013 Redundancy calculation Figure 17 \u2013 Redundancy layout with single point of failure <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 5.10.7 Redundant layout: cross-redundancy Figure 18 \u2013 Redundancy layout with cross-coupling <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 5.10.8 Maintainability 5.10.9 Availability Figure 19 \u2013 Availability definitions <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 5.10.10 Integrity Figure 20 \u2013 Residual error rate as a function of BER <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 5.10.11 Dependability 5.10.12 Example: Dependability of GOOSE transmission <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 6 Use cases and WAN communication requirements 6.1 List of generic use cases <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 6.2 Teleprotection (IF2 & IF11) 6.2.1 Teleprotection schemes 6.2.2 Teleprotection data kinds 6.2.3 Current differential teleprotection for multi-terminal transmission line <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 6.2.4 Teleprotection communication requirements Figure 21 \u2013 Network configurations for multi-terminal line protection <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Table 10 \u2013 Latency for line protection Table 11 \u2013 Summary of operational requirements of line protection <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 6.3 Wide area monitoring system (IF13) 6.3.1 WAMS overview Table 12 \u2013 Summary of communication requirements for teleprotection <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 6.3.2 WAMS topology <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Figure 22 \u2013 Principle of synchrophasor transmission <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 6.3.3 WAMS communication requirements Figure 23 \u2013 PMUs and data flow between TSO and regional data hubs <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Table 13 \u2013 Summary of synchrophasor requirements <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 6.4 Wide area monitoring, protection, and control (WAMPAC) IF13 6.4.1 Functional description Figure 24 \u2013 Target phenomena for WAMPAC Table 14 \u2013 Summary of communication requirements for wide area monitoring <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Figure 25 \u2013 Example of main function and general information flow <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 6.4.2 WAMPAC communication requirements 6.5 Fault Location 6.5.1 Functional description Table 15 \u2013 Typical communication requirements for WAMPAC <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Figure 26 \u2013 Network configuration for a fault locator system <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 6.5.2 Fault location communication requirements 6.6 Distribution Automation 6.6.1 Functional description Table 16 \u2013 Requirements for fault location <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 6.6.2 Distribution automation communication requirements Figure 27 \u2013 System configuration for distribution automation Table 17 \u2013 Requirements for distribution automation communication <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 6.7 Condition monitoring and diagnostics (CMD) and asset management (IF7) 6.7.1 Functional description 6.7.2 CMD communication requirements Figure 28 \u2013 Network configurations for CMD and asset management Table 18 \u2013 Communication requirements for CMD <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 6.8 Telecontrol (SCADA) 6.8.1 Functional description 6.8.2 Telecontrol communication requirements Figure 29 \u2013 Logical network configuration for telecontrol (SCADA) <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 6.9 Control centre to control centre (IF12) 6.9.1 Functional description Table 19 \u2013 Communication requirements for CC to SS\/PS Table 20 \u2013 Latency and timing requirements from IEC TR 61850-90-2 <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 6.9.2 Inter control centre communication requirements Figure 30 \u2013 Network configurations for inter-control centre Table 21 \u2013 Communication requirements for inter-control centre communications <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 6.10 Smart metering \/ advanced metering infrastructure 6.10.1 Functional description 6.10.2 Smart metering communication requirements Figure 31 \u2013 System configuration for smart metering Table 22 \u2013 Requirements for smart metering communication <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 6.11 WAN communication requirements summary Table 23 \u2013 Classification of communication requirements <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 7 Wide-area and real-time network technologies 7.1 General 7.2 Topology Table 24 \u2013 Communication requirements of wide-area applications <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 7.3 Overview Figure 32 \u2013 Network ring topology example <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Table 25 \u2013 Communication technologies <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 7.4 Layer 1 (physical) transmission media 7.4.1 Summary 7.4.2 Installation guidelines 7.4.3 Metallic lines Table 26 \u2013 Physical communication media <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Table 27 \u2013 DSL communication over twisted pairs Table 28 \u2013 Trade-offs in copper cable communication <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 7.4.4 Power line carrier (PLC) Table 29 \u2013 Power Line Telecommunication advantages and disadvantages <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Table 30 \u2013 HF spectrum allocated for HV\/MV PLC systems Table 31 \u2013 HF spectrum used for narrowband LV PLC and associated standards <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Figure 33 \u2013 Narrowband channel plans for LV PLC Europe vs. North America Figure 34 \u2013 HF allocated frequency spectrum plans for LV BPL <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Figure 35 \u2013 Narrowband spectrum usage vs. standards and regulation areas [57] <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Table 32 \u2013 Characteristics of common NB-PLC standards <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure 36 \u2013 HV PLC link building blocks <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Figure 37 \u2013 Phase-to-ground coupling for PLC Figure 38 \u2013 HV PLC coupling with suspended line traps <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Figure 39 \u2013 Phase-to-phase signal coupling for PLC Figure 40 \u2013 Phase-to-phase signal coupling <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Figure 41 \u2013 Power line carrier, line traps <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 7.4.5 Radio transmission Table 33 \u2013 HV\/MV APLC\/DPLC\/BPL technology performance <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Figure 42 \u2013 Terrestrial microwave link <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Figure 43 \u2013 Layer 2 transport on microwave radio systems Table 34 \u2013 Microwave link performance <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Table 35 \u2013 Terrestrial microwave advantages and disadvantages Table 36 \u2013 Terrestrial mobile radio technologies <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Table 37 \u2013 Terrestrial radio advantages and disadvantages <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Figure 44 \u2013 DMR (Digital Mobile Radio) Table 38 \u2013 DMR advantages and disadvantages <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Table 39 \u2013 Satellite radio advantages and disadvantages <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Figure 45 \u2013 LoRaWANTM Protocol Stack <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | Table 40 \u2013 LPWAN technology capabilities <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | Table 41 \u2013 Wireless technologies used for customer-side communications in Japan <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 7.4.6 Fibre optics <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Figure 46 \u2013 ADSS fibre cable Figure 47 \u2013 ADSS installation with splicing box <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Figure 48 \u2013 OPGW in ground cable Figure 49 \u2013 OPGW with two “C”-tubes each with 32 fibers <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Figure 50 \u2013 OPGW fibers <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Figure 51 \u2013 Splicing box <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Figure 52 \u2013 WDM over one fibre Figure 53 \u2013 OCh optical components <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | 7.4.7 Layer 1 redundancy Table 42 \u2013 Optical fibres: advantages and disadvantages <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | 7.4.8 Application example: diverse redundancy against extreme contingencies (Hydro-Quebec) Figure 54 \u2013 Optical link with microwave back-up <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 7.4.9 Layer 1 security 7.5 Layer 1,5 (physical) multiplexing Figure 55 \u2013 Photograph of a partially destroyed 735 kV line <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 7.6 Layer 2 (link) technologies 7.6.1 Telephony technologies <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | Figure 56 \u2013 E1 and E2 channels Figure 57 \u2013 Digital transmission hierarchy (T-standards) <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 7.6.2 SDH\/SONET Figure 58 \u2013 Digital transmission hierarchy (E-standard) <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Figure 59 \u2013 Example of an SDH network for utilities <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Figure 60\u2013 SONET multiplexing hierarchy Figure 61 \u2013 SDH multiplexing hierarchy <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Table 43 \u2013 SONET and SDH hierarchies <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Figure 62 \u2013 SDH\/SONET with point-to-point topology Figure 63 \u2013 SDH\/SONET with linear topology <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Figure 64 \u2013 BLSR\/BSHR topology in normal conditions (from A to D) Figure 65 \u2013 BLSR\/BSHR topology in failure conditions <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Figure 66 \u2013 SNCP\/UPSR topology in normal conditions <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Figure 67 \u2013 SNCP\/UPSR topology in failure conditions <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 7.6.3 Optical Transport Network Table 44 \u2013 Summary of SDH\/SONET <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Figure 68 \u2013 Example of information flow relationship in OTN <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 7.6.4 Ethernet Figure 69 \u2013 IEEE 802.3 (Ethernet) frame format Table 45 \u2013 Ethernet physical layers <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Figure 70 \u2013 IEEE 802.3 (Ethernet) topology with RSTP switches <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | Figure 71 \u2013 IEEE 802.1Q-tagged Ethernet frame format <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | Figure 72 \u2013 Direct Ethernet with VLAN in substation-to-substation transmission <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | Figure 73 \u2013 Substation-to-substation Layer 2 transmission tunnelled over IP <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | Figure 74 \u2013 PRP structure (within and outside a substation) <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Figure 75 \u2013 HSR ring connecting substations and control centre <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Figure 76 \u2013 MACsec frame format <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | Figure 77 \u2013 IEEE 802.1X principle <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 7.6.5 Ethernet over TDM Figure 78 \u2013 Ethernet for substation-to-substation communication <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Figure 79 \u2013 Packets over TDM Table 46 \u2013 Payload mapping using SDH\/SONET and Next Generation SDH\/SONET <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 7.6.6 Carrier Ethernet <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 7.6.7 Audio-video bridging 7.6.8 Provider Backbone Bridge (PBB) Table 47 \u2013 Carrier Ethernet summary <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Figure 80 \u2013 IEEE 802.1Q\/ad\/ah network configuration <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | 7.6.9 Multiprotocol Label Switching (MPLS) <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Figure 81 \u2013 Basic MPLS architecture Figure 82 \u2013 Example of MPLS frame format with IPv4 payload <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Figure 83 \u2013 MPLS building blocks <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Figure 84 \u2013 MPLS network architecture for utilities <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Figure 85 \u2013 IP\/MPLS and MPLS-TP features Table 48 \u2013 IP\/MPLS characteristics <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | Table 49 \u2013 MPLS-TP characteristics <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | Figure 86 \u2013 MPLS-TP redundant routing Table 50 \u2013 MPLS summary <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 7.7 Layer 3 (network) technologies 7.7.1 Internet Protocol (IP) Figure 87 \u2013 Ethernet frame with IP network header <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | Figure 88 \u2013 Mapping of IPv4 to Ethernet frames <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Figure 89 \u2013 Mapping of IPv6 to Ethernet frames <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | Figure 90 \u2013 IPv6 unicast address structure <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | Figure 91 \u2013 IPv6 ULA address structure Figure 92 \u2013 IPv6 link local address structure <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | Table 51 \u2013 Differences between IPv4 and IPv6 <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Table 52 \u2013 IPv6 vs IPv4 addresses (RFC 4291) <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Figure 93 \u2013 Mapping of IPv4 to IPv6 addresses <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | 7.7.2 IP QoS <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Figure 94 \u2013 DiffServ codepoint field Table 53 \u2013 List of DiffServ codepoint field values <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | 7.7.3 IP multicast Figure 95 \u2013 Unidirectional protocol independent multicast <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | 7.7.4 IP redundancy 7.7.5 IP security Figure 96 \u2013 Bidirectional protocol independent multicast <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Figure 97 \u2013 Frame format for IPsec (authenticated) Figure 98 \u2013 Frame format for IPsec (encrypted) <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 7.7.6 IP communication for utilities Figure 99 \u2013 Layer 3 direct connection within same address space <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | Figure 100 \u2013 Connecting substations to SCADA by a NAT <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | 7.7.7 IP summary Figure 101 \u2013 Substation to SCADA connection over ALG Table 54 \u2013 IP Summary <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 7.8 Layer 4 (transport) protocols 7.8.1 Transport layer encapsulation 7.8.2 UDP Figure 102 \u2013 Ethernet frame with UDP transport layer <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | 7.8.3 TCP Figure 103 \u2013 UDP header Figure 104 \u2013 TCP header <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | 7.8.4 Layer 4 redundancy 7.8.5 Layer 4 security 7.9 Layer 5 (session) and higher 7.9.1 Session layer <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | 7.9.2 Routable GOOSE and SMV 7.9.3 Example: C37.118 transmission Figure 105 \u2013 Session and presentation layers for MMS Figure 106 \u2013 Session and presentation layers for R-GOOSE <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | 7.9.4 Session protocol for voice and video transmission 7.9.5 Application interface redundancy Figure 107 \u2013 IEEE C37.118 frame over UDP Figure 108 \u2013 Redundant network transmission handled by the application layer <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | 7.9.6 Application device redundancy 7.10 Protocol overlay \u2013 tunnelling 7.10.1 Definitions <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | 7.10.2 Tunnelling principle 7.10.3 Tunnelling Layer 2 over Layer 3 Figure 109 \u2013 Tunnelling in IEC TR 61850-90-1 <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | 7.10.4 Application Example: Tunnelling GOOSE and SMV in IEC 61850 Figure 110 \u2013 L2TP transporting Layer 2 frames over IP <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | 7.11 Virtual private networks (VPNs) 7.11.1 VPN principles 7.11.2 L2VPNs Figure 111 \u2013 Tunneling SMV over IP in IEC TR 61850-90-5 <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | Figure 112 \u2013 L2VPNs VPWS and VPLS <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 7.11.3 L2VPN multicast on MPLS 7.11.4 L3VPN Figure 113 \u2013 L3VPN <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | 7.11.5 VPN mapping to application Figure 114 \u2013 Emulation of L3VPN by L2VPN and global router <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | Table 55 \u2013 VPN services <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | Figure 115 \u2013 Tele-protection over VPWS Figure 116 \u2013 WAMS over VPLS <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | Figure 117 \u2013 VPN for IP-based SCADA\/EMS traffic <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | 7.12 Cyber security 7.12.1 Security circles <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | 7.12.2 Network security <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | Figure 118 \u2013 VPN deployment options <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | 7.12.3 Access control 7.12.4 Threat detection and mitigation. <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | Figure 119 \u2013 IP network separator <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 7.12.5 Security architecture <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | 7.12.6 Application (end-to-end) communication security Figure 120 \u2013 Security architecture (using segmentation and perimeter security) <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | 7.12.7 Security for synchrophasor (PMU) networks (IEC TR 61850-90-5) Table 56 \u2013 IEC 62351 series <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | 7.12.8 Additional recommendations 7.13 QoS and application-specific engineering 7.13.1 General 7.13.2 SDH\/SONET QoS and SLA 7.13.3 PSN QoS and SLA <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 7.13.4 Application and priority 7.13.5 QoS chain between networks Table 57 \u2013 Example of simple application priority assignment <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | 7.13.6 QoS mapping between networks Figure 121 \u2013 QoS chain <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | 7.13.7 QoS engineering <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 7.13.8 Customer restrictions 7.13.9 Clock services 7.14 Configuration and OAM 7.14.1 Network configuration 7.14.2 OAM <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | 7.15 Time synchronization 7.15.1 Oscillator stability Table 58 \u2013 Typical oscillator stability <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | 7.15.2 Mutual synchronization 7.15.3 Direct synchronization Figure 122 \u2013 Timing pulse transmission methods of legacy teleprotection devices <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | 7.15.4 Radio synchronization 7.15.5 GNSS synchronization 7.15.6 Frequency distribution <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | Figure 123 \u2013 SyncE application Figure 124 \u2013 Synchronous Ethernet architecture <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | 7.15.7 Time distribution <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | Figure 125 \u2013 SNTP clock synchronization and network delay measurement <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | Figure 126 \u2013 Model of GMC, two BCs in series and SC over Layer 3 Figure 127 \u2013 Timing diagram of PTP (end-to-end, 2-step, TC and BC) <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | Figure 128 \u2013 Timing diagram of PTP (peer-to-peer, 2-step TCs) Table 59 \u2013 IEC 61588 option comparison <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 7.15.8 PTP telecommunication profiles <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | 7.15.9 PTP over MPLS 7.15.10 Comparison of time distribution profiles based on IEC 61588 Table 60 \u2013 Precision time distribution protocols based on IEC 61588 <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | 7.15.11 Application example: synchrophasor time synchronization <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | 7.15.12 Application example: Atomic clock hierarchy Figure 129 \u2013 Substations synchronization over WAN <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | 8 Technology mapping to applications 8.1 Overview 8.2 Current differential teleprotection for multi-terminal transmission lines 8.2.1 General Figure 130 \u2013 Example of synchronization network <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | 8.2.2 Deterministic fibre-optic PDH loop network 8.2.3 Dedicated Gigabit Ethernet network Figure 131 \u2013 Distributed loop configuration for HV multi-terminal line protection <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | 8.2.4 Carrier Ethernet with wide-area time synchronization Figure 132 \u2013 Current differential teleprotection for HV multi-terminaltransmission line using Layer 2 network <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | 8.2.5 MPLS based wide area network Figure 133 \u2013 Configuration of wide area current differential primary and backup teleprotection system employing Carrier Ethernet and IEC 61588 time synchronization <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | Figure 134 \u2013 Current differential protection communication via MPLS network <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | 8.3 Wide area monitoring, protection, and control (WAMPAC) 8.3.1 General 8.3.2 Wide area stabilizing control using legacy network <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | Figure 135 \u2013 System configuration for wide area stabilizing control system Figure 136 \u2013 Appearance of typical CCE cubicle <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | 8.3.3 PMU-based WAMPAC using time-synchronized Layer 2 and Layer 3 network Table 61 \u2013 Main system specifications for wide area stabilizing control system <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | 8.4 Fault location Table 62 \u2013 Main system specifications for PMU-based WAMPAC system <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | 8.5 SCADA and facility maintenance Figure 138 \u2013 IEEE 802.1Q\/ad utility network <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | Figure 139 \u2013 Mixed SDH\/MPLS network for SCADA and facility maintenance services Table 63 \u2013 Requirements for the YONDEN IP network Table 64 \u2013 Technologies for the YONDEN IP network <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | 8.6 Distribution automation 8.7 Smart metering Figure 140 \u2013 Wired technology solutions for distribution automation Figure 141 \u2013 Wireless technology solutions for distribution automation(Radio network in feeder automation) <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | Figure 142 \u2013 Multi-hop wireless system Figure 143 \u2013 NB-PLC system Figure 144 \u2013 Cellular services used for a low-density residential area <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | Figure 145 \u2013 WAN communication protocols for smart metering <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | 9 Network migration 9.1 TDM to packet switched network 9.1.1 General 9.1.2 Overview 9.1.3 Drivers for network migration <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | 9.1.4 Considerations for network migration <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | 9.1.5 Migration concepts <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | Figure 146 \u2013 Migration path from TDM to Packet in the Power Utility Operational Network <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | Figure 147 \u2013 Ethernet or MPLS beside SDH over separate fibre or wavelength Figure 148 \u2013 Ethernet or MPLS-TP and SDH in a Hybrid platform <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | 9.1.6 Implementation details <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | Figure 149 \u2013 Pseudo-wire principle <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | Figure 150 \u2013 Non-IP voice communication over PSN <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | Figure 151 \u2013 Circuit emulation over PSN <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | 9.2 From IPv4 to IPv6 9.2.1 IPv4 to IPv6 evolution 9.2.2 IPv4 to IPv6 migration Figure 152 \u2013 IPv6 evolution Table 65 \u2013 Pseudowire protocols <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | 9.2.3 IEC 61850 stack with IPv4 and IPv6 Figure 153 \u2013 IEC 61850 stack with IPv4 and IPv6 (doubly attached) <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | Annex A (informative)Future promising or upcoming technologies A.1 5G A.1.1 General <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | A.1.2 Different performance requirements Figure A.1 \u2013 Software network technologies in 5G overall architecture <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | Figure A.2 \u2013 5G Conceptual Diagram \u2013 NGMN <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | Figure A.3 \u2013 NB-IOT deployment models Table A.1 \u2013 3GPP machine type communications <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | A.2 Deterministic networking technologies <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Communication networks and systems for power utility automation – Wide area network engineering guidelines<\/b><\/p>\n |