{"id":439202,"date":"2024-10-20T08:07:45","date_gmt":"2024-10-20T08:07:45","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iso-tr-279252023\/"},"modified":"2024-10-26T15:14:05","modified_gmt":"2024-10-26T15:14:05","slug":"bsi-pd-iso-tr-279252023","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iso-tr-279252023\/","title":{"rendered":"BSI PD ISO\/TR 27925:2023"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | National foreword <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 4 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 5 Overview of the necessity of flow assurance in CCS projects 5.1 General 5.2 Reasons to maintain flow assurance <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 5.3 Potential factors affecting flow of CO2 streams at individual components of CCS projects 5.3.1 General <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 5.3.2 CO2 sources 5.3.3 Capture facilities 5.3.4 Transportation 5.3.5 Field distribution <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 5.3.6 Injection wells 5.3.7 Storage reservoirs <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 5.3.8 Optional components 5.4 Providing flow assurance 5.4.1 General 5.4.2 Technical design 5.4.3 Operational procedures and work-flows <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 5.4.4 Overarching project management 6 Fluid composition and physical properties 6.1 General <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 6.2 CO2 phase behaviour and thermophysical properties \u2014 Key features <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 6.3 Modelling properties of pure CO2 <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 6.4 Properties of impure CO2 \u2014 Phenomena and their modelling <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 6.5 Individual impurities 6.5.1 General 6.5.2 Water 6.5.3 Nitrogen and argon 6.5.4 Hydrogen <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 6.5.5 Oxygen 6.5.6 Carbon monoxide 6.5.7 Methane and ethane 6.5.8 Propane and other aliphatic hydrocarbons 6.5.9 Nitrogen and sulfur oxides <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 6.5.10 Hydrogen sulfide 6.5.11 Carbonyl sulfide 6.5.12 Ammonia 6.5.13 Amines 6.5.14 Benzene, toluene, ethylxylene and xylene 6.5.15 Methanol <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6.5.16 Ash, dust, metals and other particulate matter 6.5.17 Naphthalene 6.5.18 Volatile organic compounds 6.5.19 Chlorine 6.5.20 Hydrogen chloride, hydrogen fluoride and hydrogen cyanide 6.5.21 Glycols <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.6 Effects of reactive impurities \u2014 Phenomena and their modelling 6.6.1 General 6.6.2 Formation of corrosive aqueous phases <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6.6.3 CO2 specifications <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 6.6.4 Modelling of formation of corrosive aqueous phases <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 6.6.5 Depressurisation and impact of reactive impurities 6.6.6 Corrosion issues in CO2 injection wells 6.6.7 \u200bMonitoring reactive impurities in the CO2 stream <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 6.6.8 Particle, wear and clogging 6.7 Modelling of CO2 stream properties in commercial flow assurance tools 6.7.1 General <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 6.7.2 Joule-Thomson effect <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 6.7.3 Viscosity <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 6.7.4 Flow assurance simulation for CO2 transportation in pipes <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 7 CO2 pipeline transport and well injection <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 7.1 Operation under single-phase flow conditions 7.1.1 General <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 7.1.2 Fluid hammer 7.1.3 Shut-down of pipeline and well <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 7.1.4 Start-up and restart of pipeline transport and well injection <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 7.2 Normal operation under two-phase flow conditions 7.2.1 General 7.2.2 Identification of two-phase flow in the pipeline and well <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 7.2.3 State of the art of modelling two-phase CO2 flow in pipelines and wells 7.2.4 Shut-down and restart <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 7.2.5 Cavitation 7.3 Special operation with two-phase flow 7.3.1 Depressurization <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 7.3.2 Planned and un-planned pipeline pressure release <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 7.3.3 Well blowout 7.3.4 Leakage detection 7.4 Other issues 7.4.1 Dry ice formation 7.4.2 Hydrates <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 7.5 Ready for operation <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 8 Fluid flow in storage reservoirs 8.1 General <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 8.2 Depleted gas reservoirs <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 8.3 Saline aquifers <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 8.4 EOR operations <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Carbon dioxide capture, transportation and geological storage. Cross cutting issues. Flow assurance<\/b><\/p>\n |