{"id":228890,"date":"2024-10-19T14:53:11","date_gmt":"2024-10-19T14:53:11","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-clc-ts-506072013\/"},"modified":"2024-10-25T09:00:00","modified_gmt":"2024-10-25T09:00:00","slug":"bsi-pd-clc-ts-506072013","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-clc-ts-506072013\/","title":{"rendered":"BSI PD CLC\/TS 50607:2013"},"content":{"rendered":"
This Technical Specification describes:<\/p>\n
the system physical structure;<\/p>\n<\/li>\n
the system control signals, which implement a set of messages using DiSEqC physical layer but not the DiSEqC message structure;<\/p>\n<\/li>\n
the definition of identified configurations;<\/p>\n<\/li>\n
the management of the potential collisions in the control signals traffic.<\/p>\n<\/li>\n<\/ul>\n
Figure 1 illustrates the physical system configuration considered in this Technical Specification.<\/p>\n
Several satellite signal demodulators can receive signals from any of the input signal banks (Bank 1, Bank 2, \u2026. Bank M, with M \u2264 256) of the LNB or the switch. The signals selected by the demodulators (or receivers) are transported via a single cable to these demodulators (Receiver 1, Receiver 2, \u2026. Receiver N, with N \u2264 32).<\/p>\n
To achieve these single cable distributions, the Single Cable Interface (SCIF, likely embedded in a LNB or a Switch) features some specific functions and characteristics.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
6<\/td>\n | This document (CLC\/TS 50607:2013) has been prepared by CLC\/TC 209 “Cable networks for television signals, sound signals and interactive services”. <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 3 Terms, definitions and abbreviations 3.1 Terms and definitions 3.2 Abbreviations <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 4 System architecture <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 5 SCIF control signals 5.1 DC levels <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 5.2 Method of the data bit signalling <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 6 Structure and format of the SCD2 messages 6.1 Backwards Compatibility to EN 50494 6.2 Non-DiSEqC structure 6.3 Uni-directional operation 6.4 Bi-directional operation 7 SCD2 commands 7.1 ODU_Channel_change 7.1.1 Formats <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 7.1.2 \u201cSpecial\u201d frequencies <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 7.2 ODU_Channel_change_PIN 7.3 ODU_UB_avail <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 7.4 ODU_UB_PIN <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 7.5 ODU_UB_inuse <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 7.6 ODU_UB_freq <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 7.7 ODU_UB_switches 8 Conventions 8.1 UB slots numbering <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 8.2 Numbering of satellite IF banks 9 Traffic collision management rules 9.1 General <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 9.2 Automatic detection of SCIF control signal failure 9.3 Pseudo-random repeat 9.3.1 Handling of SCIF control signal <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 9.3.2 Random delay generation law <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Annex A (normative) Implementation rules A.1 User interface A.2 Installation impedance <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | A.3 Signal reflection and return loss in installations A.4 Power supply of the SCIF <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | A.5 Remarks concerning power supply <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Satellite signal distribution over a single coaxial cable. Second generation<\/b><\/p>\n |