{"id":254865,"date":"2024-10-19T16:50:37","date_gmt":"2024-10-19T16:50:37","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-61970-3012011\/"},"modified":"2024-10-25T12:16:40","modified_gmt":"2024-10-25T12:16:40","slug":"bs-en-61970-3012011","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-61970-3012011\/","title":{"rendered":"BS EN 61970-301:2011"},"content":{"rendered":"
This part of IEC 61970 deals with the common information model (CIM), an abstract model that represents all the major objects in an electric utility enterprise typically involved in utility operations.<\/p>\n
The object classes represented in the CIM are abstract in nature and may be used in a wide variety of applications. The use of the CIM goes far beyond its application in an EMS. This standard should be understood as a tool to enable integration in any domain where a common power system model is needed to facilitate interoperability and plug compatibility between applications and systems independent of any particular implementation.<\/p>\n
By providing a standard way of representing power system resources as object classes and attributes, along with their relationships, the CIM facilitates the integration of energy management system (EMS) applications developed independently by different vendors, between entire EMS systems developed independently, or between an EMS system and other systems concerned with different aspects of power system operations, such as generation or distribution management. SCADA (supervisory control and data acquisition) is modeled to the extent necessary to support power system simulation and inter-control center communication. The CIM facilitates integration by defining a common language (i.e., semantics and syntax) based on the CIM to enable these applications or systems to access public data and exchange information independent of how such information is represented internally.<\/p>\n
Due to the size of the complete CIM, the object classes contained in the CIM are grouped into a number of logical packages, each of which represents a certain part of the overall power system being modeled. Collections of these packages are progressed as separate International Standards. This particular International Standard specifies a base set of packages which provide a logical view of the functional aspects of energy management system (EMS) information within the electric utility enterprise that is shared between all applications. Other standards specify more specific parts of the model that are needed by only certain applications. Subclause 4.2 provides the current grouping of packages into standard documents.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
7<\/td>\n | English \n CONTENTS <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 3 Terms and definitions 4 CIM specification 4.1 CIM modeling notation 4.2 CIM packages <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Figures \n Figure 1 \u2013 CIM IEC\u00a061970-301 package diagram <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 4.3 CIM classes and relationships <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Figure 2 \u2013 Example of generalization Figure 3 \u2013 Example of simple association <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 4.4 CIM model concepts and examples Figure 4 \u2013 Example of aggregation <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Figure 5 \u2013 Equipment containers <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Figure 6 \u2013 Connectivity model <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Figure 7 \u2013 Simple network example <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Figure 8 \u2013 Simple network connectivity modeled with CIM topology <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure 9 \u2013 Equipment inheritance hierarchy <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Figure 10 \u2013 Transformer model <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Figure 11 \u2013 Navigating from PSR to MeasurementValue <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Table 1 \u2013 MeasurementType naming conventions <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Figure 12 \u2013 Measurement placement Table 2 \u2013 MeasurementValueSource naming conventions <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 4.5 Modeling guidelines Figure 13 \u2013 Regulating control models <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 4.6 Modeling tools 4.7 User implementation conventions 4.8 CIM modeling examples <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 5 Detailed model 5.1 Overview 5.2 Context Figure 14 \u2013 CIM top level packages <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 6 Package architecture (normative) 6.1 IEC\u00a061970 Figure 15 \u2013 Main <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 6.2 Domain Figure 16 \u2013 CombinedDatatypes Figure 17 \u2013 BasicDatatypes <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure 18 \u2013 ElectricityDatatypes <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Figure 19 \u2013 EnumeratedUnitDatatypes <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure 20 \u2013 GeneralDatatypes Figure 21 \u2013 MonetaryDatatypes <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Figure 22 \u2013 TimeDatatypes <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 6.3 Core <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Figure 23 \u2013 Reporting <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Figure 24 \u2013 Main <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Figure 25 \u2013 CurveSchedule Figure 26 \u2013 Datatypes <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Figure 27 \u2013 DocumentationExampleAggregation Figure 28 \u2013 DocumentationExampleAssociation Figure 29 \u2013 Ownership <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 6.4 OperationalLimits Figure 30 \u2013 OperationalLimits <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Figure 31 \u2013 BranchGroup <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 6.5 Topology Figure 32 \u2013 TopologicalNodeTerminal <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure 33 \u2013 TopologyMeasRelations <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Figure 34 \u2013 TopologyReporting <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Figure 35 \u2013 Main <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 6.6 Wires <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure 36 \u2013 DocumentationExampleInheritance <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Figure 37 \u2013 MutualCoupling <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Figure 38 \u2013 Datatypes <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Figure 39 \u2013 InheritanceHierarchy <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Figure 40 \u2013 LineModel <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Figure 41 \u2013 NamingHierarchyPart1 <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Figure 42 \u2013 NamingHierarchyPart2 <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Figure 43 \u2013 RegulatingEquipment <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Figure 44 \u2013 TransformerModel <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Figure 45 \u2013 VoltageControl <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 6.7 Generation \u2012 Generation package summary 6.8 Production Figure 46 \u2013 Main <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | Figure 47 \u2013 Nuclear <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Figure 48 \u2013 Main <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | Figure 49 \u2013 Datatypes <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Figure 50 \u2013 Hydro <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Figure 51 \u2013 Thermal <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 6.9 GenerationDynamics Figure 52 \u2013 Main Figure 53 \u2013 Datatypes <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | 6.10 LoadModel <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | Figure 54 \u2013 Main Figure 55 \u2013 Datatypes <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | 6.11 Outage Figure 56 \u2013 Datatypes <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | Figure 57 \u2013 Main <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | 6.12 Protection Figure 58 \u2013 Main <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | 6.13 Equivalents <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | Figure 59 \u2013 Main <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | 6.14 Meas Figure 60 \u2013 Datatypes <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | Figure 61 \u2013 Control <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | Figure 62 \u2013 InheritanceStructure <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | Figure 63 \u2013 Measurement <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | Figure 64 \u2013 Quality <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | 6.15 SCADA Figure 65 \u2013 Datatypes <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | Figure 66 \u2013 Main <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | 6.16 ControlArea Figure 67 \u2013 ControlArea <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | Figure 68 \u2013 ControlAreaInheritance Figure 69 \u2013 Datatypes <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | 6.17 Contingency <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | Figure 70 \u2013 Contingency <\/td>\n<\/tr>\n | ||||||
263<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Energy management system application program interface (EMS-API) – Common information model (CIM) base<\/b><\/p>\n |