{"id":30448,"date":"2024-10-17T03:31:29","date_gmt":"2024-10-17T03:31:29","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asme-mfc-7m-1987-r2006\/"},"modified":"2024-10-24T14:19:46","modified_gmt":"2024-10-24T14:19:46","slug":"asme-mfc-7m-1987-r2006","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asme\/asme-mfc-7m-1987-r2006\/","title":{"rendered":"ASME MFC 7M 1987 R2006"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
3<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | Standards Committee Roster <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | 1 Scope and Field of Application 2 Symbols and Definitions 2.1 Symbols 2.2 Definitions <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | Table 1 Symbols <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 3 Basic Equations 3.1 State Equation 3.2 Flow Rate in Ideal Conditions 3.3 Flow Rate in Real Conditions 4 Applications For Which the Method is Suitable <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 5 Standard Critical Flow Venturi Nozzles 5.1 General Requirements 5.2 Standard Venturi Nozzles <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | Figures 1 Toroidal Throat Venturi Nozzle <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 6 Installation Requirements 6.1 General 6.2 Upstream Pipeline 6.3 Large Upstream Space 6.4 Downstream Requirements 6.5 Pressure Measurement 2 Cylindrical Throat Venturi Nozzle <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 3 Installation Requirements for an Upstream Pipework Configuration 4 Detail of Pressure Tap <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 6.6 Drain Holes 6.7 Temperature Measurement 6.8 Density Measurement 7 Calculation Methods 7.1 Method of MassFlow Rate Computation 7.2 Discharge Coefficient <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 7.3 Computation of Real Gas Critical Flow Function 7.4 Conversion of Measured Pressure and Temperature to Stagnation Conditions 7.5 Maximum Permissible Downstream Pressure 8 Uncertainties in the Measurement of Flow Rate <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 5 Maximum Permissible Back Ratio for Critical Flow Venturi Nozzles <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Appendices A Venturi Nozzle Discharge Coefficients Tables A1 Toroidal Throat Venturi Nozzle Discharge Coefficient A2 Cylindrical Throat Venturi Nozzle Discharge Coefficient <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | A3 Comparison of Theoretical and Experimental Discharge Coefficients for the Toroidal Throat Nozzle <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | B References from Which Standard Critical Flow Venturi Nozzle Discharge Coefficients Were Obtained <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | C Example Flow Calculation Figure C1 Sectional View of the Nozzle and Pipe <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | D Critical Flow Functions <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | E The Critical Flow Coefficient <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | E1 Table of Fluids for Various Equations of State <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | E2 Critical Flow Coefficient for Nitrogen E3 Critical Flow Coefficient for Oxygen E4 Critical Flow Coefficient for Argon <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | E5 Critical Flow Coefficient for Methane E6 Critical Flow Coefficient for Carbon Dioxide <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" ASME MFC-7M Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles <\/b><\/p>\n |