{"id":379452,"date":"2024-10-20T03:02:30","date_gmt":"2024-10-20T03:02:30","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-61869-132021\/"},"modified":"2024-10-26T05:27:27","modified_gmt":"2024-10-26T05:27:27","slug":"bs-en-iec-61869-132021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-61869-132021\/","title":{"rendered":"BS EN IEC 61869-13:2021"},"content":{"rendered":"
IEC 61869-13:2021 is a product standard and covers only additional requirements for stand-alone merging units (SAMUs) used for AC applications having rated frequencies from 15 Hz to 100 Hz. The digital output format specification is not covered by this document; it is standardized in IEC 61869-9 as an application of IEC 61850, which specifies the power utility communication architecture. This document covers SAMUs having standardized analogue inputs (for example: 1 A, 5 A, 3,25 V \/ ?3 or 100 V \/ ?3) provided by instrument transformers compliant with relevant product standards (e.g. IEC 61869-2 to IEC 61869-5, IEC 61869-7, IEC 61869-8, IEC 61869-10, IEC 61869-11, IEC 60044-1 to IEC 60044-6, IEC 60185, IEC 60186, IEEE C57.13), and aims to convert them to the digital output compliant with IEC 61869-9. Other input and output types are outside the scope of this document. Appropriate SAMU functionality can be combined with switchgear controller functionality defined in IEC 62271-3 or other IED functionality defined in IEC 60255 (all parts). Cyber security requirements are outside the scope of this document and are covered by the IEC 62351 series. IEC 61869-13:2021 is to be used in conjunction with IEC 61869-9:2016, Digital interface for instrument transformers, and IEC 61869\u00ad6:2016, Additional general requirements for low-power instrument transformers, which, in turn, are based on IEC 61869-1:2007, General requirements.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | Annex ZA(normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | INTRODUCTION Figures Figure 1301 \u2013 Stand-alone merging unit (functional concept example) Figure 1302 \u2013 Stand-alone merging unit application example <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | Figure 1303 \u2013 Illustration of the SAMU position in relationto other devices and standards in the functional chain <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure 1304 \u2013 Specified input current time constant TI <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 4 Normal and special service conditions <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5 Ratings <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Tables Table 1301 \u2013 Insulation requirements for analogue inputs <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Table 1302 \u2013 Measuring accuracy class 0,05 <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Table 1303 \u2013 Limits of current error and phase error forSAMU measuring accuracy current channels <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Figure 1305 \u2013 Dynamic range concept example <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Table 1304 \u2013 Limits of current errors for SAMU TPM class rated protection accuracy current channels <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Table 1305 \u2013 Limits of voltage error and phase errorfor SAMU voltage channels <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6 Design and construction Table 1306 \u2013 SAMU TCTR class settings Table 1307 \u2013 SAMU TVTR class settings <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Table 1308 \u2013 Immunity requirements and tests <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Table 1309 \u2013 Acceptance criteria for EMC immunity tests <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Table 1310 \u2013 Radiated emissions tests Table 1311 \u2013 Conducted emissions tests <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Table 1312 \u2013 SAMU rating plate markings <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 7 Tests Table 1313 \u2013 Ratings defined in accordance with IEC 61850-7-4 <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Table 10 \u2013 List of tests <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 604 (modified) \u2013 Examples of subassembly subjected to EMC tests \u2013Usual structure used in HV AIS applications <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 1306 \u2013 Gradual shutdown \u2013 Startup test <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure 1307 \u2013 C-O-C-O duty cycle <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Table 1314 \u2013 Dry-heat test \u2013 Operational Table 1315 \u2013 Cold test \u2013 Operational <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Table 1316 \u2013 Dry-heat test at maximum storage temperature Table 1317 \u2013 Cold test at minimum storage temperature <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Table 1318 \u2013 Change of temperature (Cyclic temperature test) <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Table 1319 \u2013 Damp heat steady state test <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Table 1320 \u2013 Cyclic temperature with humidity test <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 8 Rules for transport, storage, erection, operation and maintenance 9 Safety <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | Annex 13A(informative)Measurement chain accuracy class considerations Figure 13A.1 \u2013 SAMU application example Table 13A.1 \u2013 Combined accuracy class table <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Annex 13B(informative)Measurement examples of switching and lightningsurge voltage in gas-insulated switchgear Figure 13B.1 \u2013 Constructional example of GIS with typical surge voltage sources <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Figure 13B.2 \u2013 Measured 550 kV GIS construction <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Figure 13B.3 \u2013 Measurement results showing a switching surge peak voltage magnitude caused by the DS operation in Figure 13B.2 <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Figure 13B.4 \u2013 Measured 275 kV GIS construction Table 13B.1 \u2013 Measurement results showing switching and lightning surge voltage recorded for the setup in Figure 13B.4 <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Figure 13B.5 \u2013 Switching and lightning surge voltage waveforms <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Figure 13B.6 \u2013 Switching surge voltage measurement setup on a 550 kV GIS with\/without an insulating flange surge absorber <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Figure 13B.7 \u2013 Switching surge voltage measurement results when the DS was operated with\/without the surge absorber <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Figure 13B.8 \u2013 CT secondary circuit configuration for the 500 kV GIS Figure 13B.9 \u2013 DS control circuit configuration for the 500 kV GIS test Table 13B.2 \u2013 Measurement results of switching surge voltage on CT secondary circuit Table 13B.3 \u2013 Measurement results showing the switching surge voltage coupling to the DS control circuit <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure 13B.10 \u2013 Waveforms of switching surge voltage at measured point I(see Table 13B.3) <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Figure 13B.11 \u2013 Block diagram of the electronic VT with amplifier tested in the 500 kV GIS system Figure 13B.12 \u2013 Lightning surge voltage as a function of surge absorbing capacitor value <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Figure 13B.13 \u2013 Lightning surge voltage as a function of coaxial cable length <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Annex 13C(normative)Low-power instrument transformer inputs <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Table 13C.1 \u2013 ITRat setting units Table 13C.2 \u2013 SAMU rating plate marking modifications <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Instrument transformers – Stand-alone merging unit (SAMU)<\/b><\/p>\n |