{"id":233720,"date":"2024-10-19T15:14:25","date_gmt":"2024-10-19T15:14:25","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-62433-32017\/"},"modified":"2024-10-25T09:45:03","modified_gmt":"2024-10-25T09:45:03","slug":"bs-en-62433-32017","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-62433-32017\/","title":{"rendered":"BS EN 62433-3:2017"},"content":{"rendered":"
IEC 62433-3:2017 provides a method for deriving a macro-model to allow the simulation of the radiated emission levels of an Integrated Circuit (IC). This model is commonly called Integrated Circuit Emission Model – Radiated Emission, ICEM-RE. The model is intended to be used for modelling a complete IC, with or without its associated package, a functional block and an Intellectual Property (IP) block of both analogue and digital ICs (input\/output pins, digital core and supply), when measured or simulated data cannot be directly imported into simulation tools.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 3 Terms, definitions, abbreviations and conventions 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 3.2 Abbreviations 3.3 Conventions 4 Philosophy <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 5 ICEM-RE macro-model description 5.1 General <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 5.2 PDN description Figures Figure 1 \u2013 General ICEM-RE model structure <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Figure 2 \u2013 Geometrical representation of the ICEM-RE PDN Figure 3 \u2013 Representation of an elementary dipole in the ICEM-RE PDN <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Figure 4 \u2013 An elementary current loop of radius \u201ca\u201d in 3D space Figure 5 \u2013 Duality theorem between a current loop and a magnetic dipole <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure 6 \u2013 Example of referential points to describe the geometry Tables Table 1 \u2013 PDN format <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 5.3 IA description 5.4 Electromagnetic field calculation and simulation Figure 7 \u2013 PDN definition at three different frequencies <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 6 REML format 6.1 General <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 6.2 REML structure Figure 8 \u2013 REML inheritance hierarchy <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 6.3 Global keywords 6.4 Header section <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 6.5 Frequency definitions 6.6 Coordinate system definition <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 6.7 Reference definition 6.8 Validity section 6.8.1 General <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 6.8.2 Attribute definitions Table 2 \u2013 Definition of the Validity section <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6.9 PDN 6.9.1 General <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.9.2 Attribute definitions Table 3 \u2013 Definition of the Submodel section of the Pdn element Table 4 \u2013 Definition of the Vector keyword in the Pdn section <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6.9.3 PDN of a single-frequency ICEM-RE <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Table 5 \u2013 Valid fields of the Submodel keyword for single-frequency PDN Table 6 \u2013 Conditions for correct annotation of single-frequency PDN by the REM parser Table 7 \u2013 Valid fields of the Vector keyword for single-frequency PDN <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure 9 \u2013 Format for defining PDN vector data in an external file <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 6.9.4 PDN for multi-frequency ICEM-RE Table 8 \u2013 Valid file extensions in the Pdn section <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Table 9 \u2013 Conditions for correct annotation of multi-frequency PDN by the REM parser <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 6.10 IA 6.10.1 General Table 10 \u2013 Definition of the Submodel section of the Ia element <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 6.10.2 Attribute definitions Table 11 \u2013 Definition of the Vector keyword in the Ia section <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 6.10.3 IA of a single-frequency ICEM-RE Table 12 \u2013 Valid fields of the Submodel keyword for single-frequency IA Table 13 \u2013 Conditions for correct annotation of single-frequency IA by the REM parser <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Table 14 \u2013 Valid fields of the Vector keyword for single-frequency IA <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 10 \u2013 Format for defining IA vector data in an external file <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 6.10.4 IA for multi-frequency ICEM-RE Table 15 \u2013 Accepted file extensions in the Ia section Table 16 \u2013 Conditions for correct annotation of multi-frequency IA by the REM parser <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 7 Extraction 7.1 General <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 7.2 Environmental extraction constraints 7.3 Obtaining model parameters from near-field data 7.3.1 General Figure 11 \u2013 Electromagnetic field measurement <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 7.3.2 PDN Figure 12 \u2013 Bz field in nT measured at 3 mm above the microprocessor at 80 MHz <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure 13 \u2013 Example of electromagnetic field emitted by an elementary current line Figure 14 \u2013 Manual current mapping <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 7.3.3 IA Figure 15 \u2013 Model representation with N automatically detected dipoles <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Figure 16 \u2013 Comparison between the modelled and measured EM fields at 2 mm above an oscillator <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 7.4 Extraction based on ICEM-CE simulation 7.4.1 General 7.4.2 PDN Figure 17 \u2013 A simple ICEM-CE PDN representing the package and the internal network impedance between the power rails <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 7.4.3 IA 8 Validation Figure 18 \u2013 Reconstructing the geometry of the package model (ICEM-RE PDN) from IBIS and its link with the electrical model (ICEM-CE PDN) <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Figure 19 \u2013 Graphical representation of the example validation procedure <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Annex A (normative)Preliminary definitions for XML representation A.1 XML basics A.1.1 XML declaration A.1.2 Basic elements A.1.3 Root element A.1.4 Comments <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | A.1.5 Line terminations A.1.6 Element hierarchy A.1.7 Element attributes A.2 Keyword requirements A.2.1 General A.2.2 Keyword characters <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | A.2.3 Keyword syntax A.2.4 File structure <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Figure A.1 \u2013 Multiple XML files Figure A.2 \u2013 XML files with data files (*.dat) <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | A.2.5 Values Figure A.3 \u2013 XML files with additional files <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Table A.1 \u2013 Valid logarithmic units <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Annex B (informative)Electromagnetic fields radiated by an elementary electric and magnetic dipole B.1 Electric dipole Figure B.1 \u2013 An elementary current line in space <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | B.2 Magnetic dipole Figure B.2 \u2013 Elementary magnetic dipole in space <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Annex C (informative)Example files C.1 Minimum default ICEM-RE file <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | C.2 Microcontroller example in REML format Figure C.1 \u2013 Microcontroller used for illustration <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure C.2 \u2013 Data file representing the PDN information of the microcontroller Figure C.3 \u2013 Data file representing the IA information of the microcontroller <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Annex D (normative)REML valid keywords and usage D.1 Root element keywords <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | D.2 File header keywords <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | D.3 Validity section keywords D.4 Global keywords <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | D.5 Pdn section keywords <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | D.6 Ia section keywords <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Annex E (informative)ICEM-RE extraction methods E.1 General E.2 ICEM-RE Modelling methods E.2.1 ModelHman E.2.2 ModelH Figure E.1 \u2013 Manually defined electric dipole array in ModelHman <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | E.2.3 ModelEM_Inv Figure E.2 \u2013 Electric and magnetic dipole array in ModelEM_Inv <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | E.2.4 ModelEM_Iter E.2.5 ModelEM_TD <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | E.2.6 Model selection guide E.3 ICEM-RE modelling environment from near-field data E.3.1 General Table E.1 \u2013 ICEM-RE model selection guide <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | E.3.2 Modelling design-flow Figure E.3 \u2013 Example of an ICEM-RE modelling environment <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | E.3.3 ICEM-RE importation into 3D electromagnetic tools Figure E.4 \u2013 ICEM-RE modelling design-flow <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | E.4 ICEM-RE modelling from ICEM-CE Figure E.5 \u2013 Example of an imported ICEM-RE PDN and IA in a 3D simulation tool <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure E.6 \u2013 Design-flow to obtain ICEM-RE from ICEM-CE model <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Annex F (informative)ICEM-RE model validation examples F.1 General F.2 Validation on a microcontroller F.2.1 General F.2.2 Details of the microcontroller F.2.3 Case 1: Choosing manual model ModelHman Figure F.1 \u2013 Microcontroller circuit used for model validation <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | F.2.4 Case 2: Choosing one of the automatic magnetic field models Figure F.2 \u2013 Manual dipoles representing the PDN of the microcontroller Figure F.3 \u2013 Comparison between the modelled and measured fieldsat 4 mm above the microcontroller using ModelHman <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure F.4 \u2013 Validation of ModelH on the microcontroller Figure F.5 \u2013 Detection of dipoles representing the microcontrollerusing ModelEM_Iter <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | F.3 Validation on an oscillator circuit Figure F.6 \u2013 Validation of ModelEM_Iter on the microcontroller Figure F.7 \u2013 Oscillator circuit used for model validation <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure F.8 \u2013 Schematic of the oscillator used for validation <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Figure F.9 \u2013 Validation of the magnetic field predicted with ModelEM_Inv and ModelEM_Iter on the oscillator at 10 mm height Figure F.10 \u2013 Validation of the electric field predicted with ModelEM_Inv and ModelEM_Iter on the oscillator at 10 mm height <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | F.4 Example of validation on passive devices Figure F.11 \u2013 Modelled maximum total magnetic field as a function of height (z)above the oscillator compared with measurements <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | F.5 Examples of validation on active devices F.5.1 Extraction from near-field measurements F.5.2 Extraction from ICEM-CE model Table F.1 \u2013 ICEM-RE model validation on passive structures <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Annex G (informative)ICEM-RE macro-model usage examples G.1 General G.2 Methodology for exploiting ICEM-RE macro-model <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure G.1 \u2013 Typical EMC issues at equipment and system level covered by ICEM-RE <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" EMC IC modelling – Models of integrated Circuits for EMI behavioural simulation. Radiated emissions modelling (ICEM-RE)<\/b><\/p>\n |